

NRE-19: AmLight 2.0: Flexible control, deep visibility, and programmability @ Tbps!

Jeronimo Bezerra - FIU/AmLight

Outline

- What is AmLight?
- Network Connectivity
- > New AmLight SDN Architecture: Plane by Plane
- > What have we planned for SC23?

What is AmLight?

A distributed academic exchange point built to enable collaboration among Latin America, Caribbean, Africa, and the U.S.

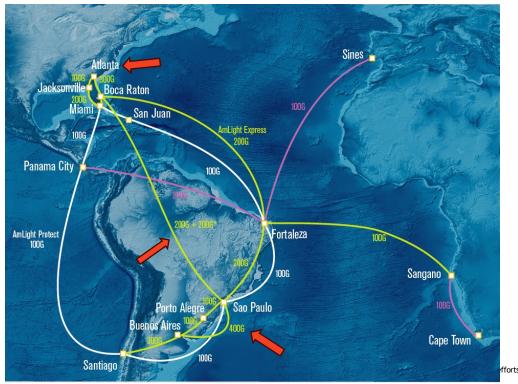
Supported by NSF via the IRNC program under award # OAC-2029283 for the 2021-2025.

Partnerships with R&E networks in the U.S., Latin America, Caribbean and Africa.

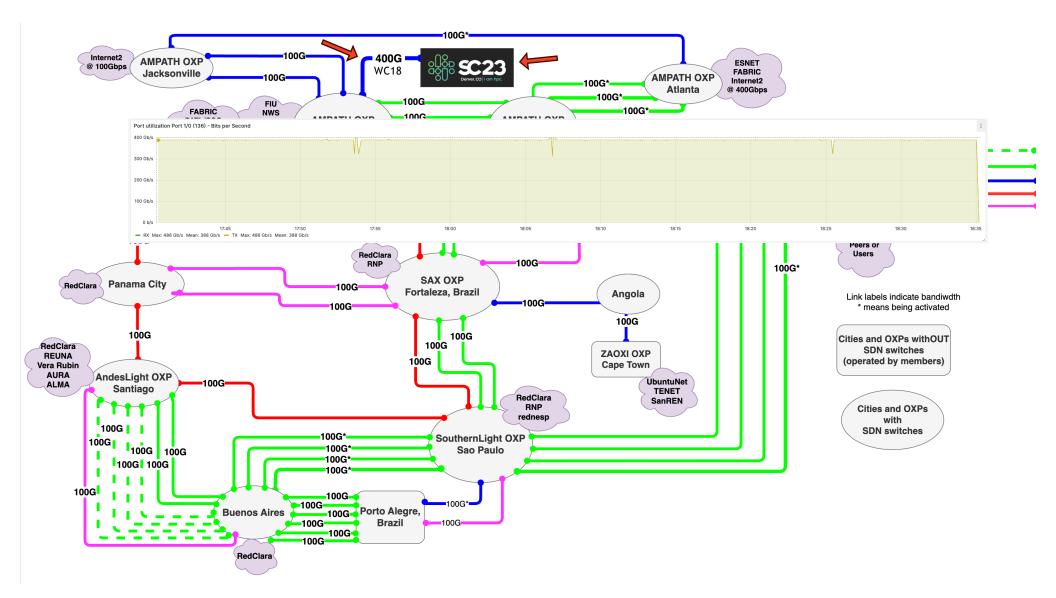
FIU

SANREN South African National Research Network

Network Connectivity...

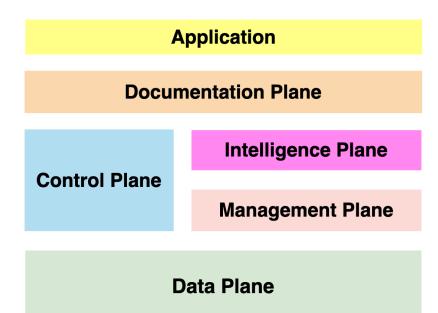

Network Connectivity

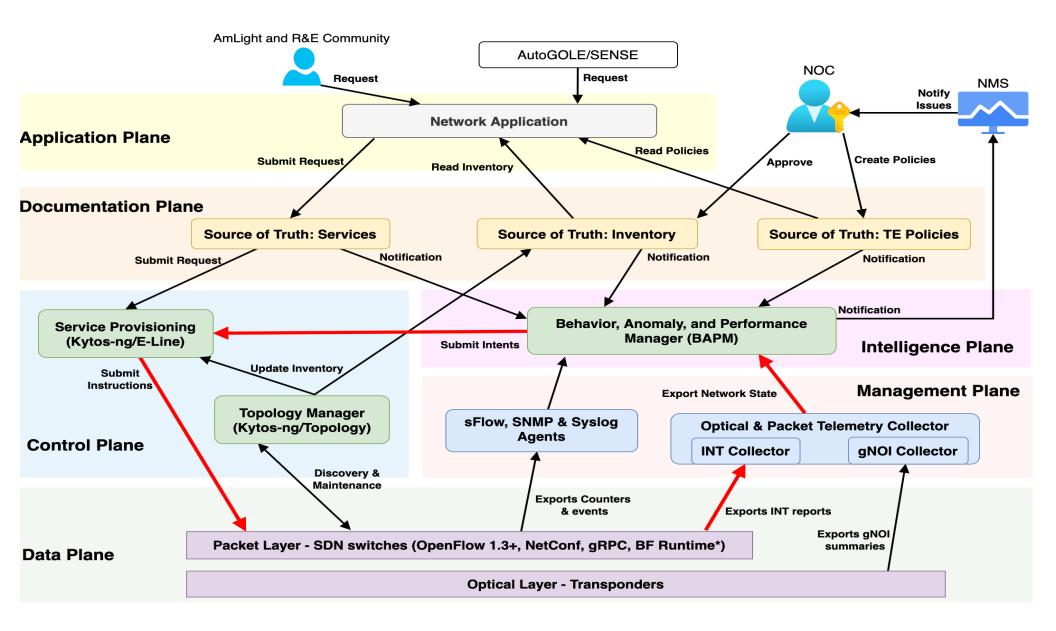
2.1+ Tbps of <u>international</u> connectivity


- 600Gbps of upstream capacity between the U.S. and Latin America, and 100Gbps to Africa
- +400Gbps in 2023 and +200Gbps in 2024
- By 2025, AmLight will reach 4.9 Tbps of <u>total</u> capacity

NAPs:

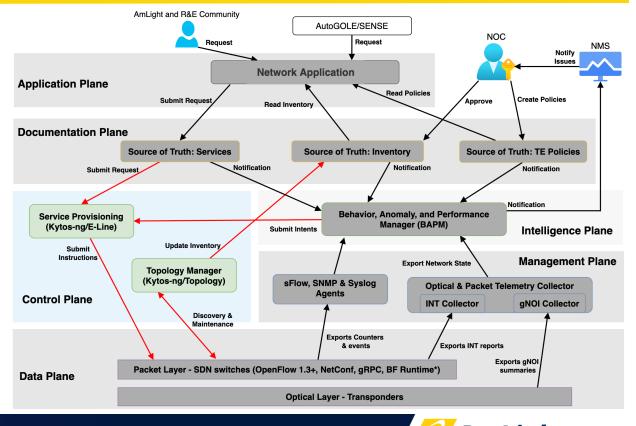
- Florida (Miami, Boca Raton, Jacksonville), Brazil (Sao Paulo, Fortaleza), Chile (Santiago), Puerto Rico (San Juan), Panama (Panama City), South Africa (Cape Town),
- New: Georgia (Atlanta), Argentina (Buenos Aires)


AmLight SDN Architecture...


AmLight SDN Architecture - 2021-2025

For 2021-2025, we will add specialized components per SDN Plane:

- New Control Plane:
 - Kytos-ng SDN Platform developed to address AmLight's and science drivers' requirements
- New Data Plane:
 - Programmable switches replacing legacy devices with customizable P4 pipeline
- New Management Plane:
 - Granular real-time network visibility with In-band Network Telemetry (INT)
- New Intelligence Plane:
 - Traffic engineering and optimizations based on granular telemetry reports in real-time



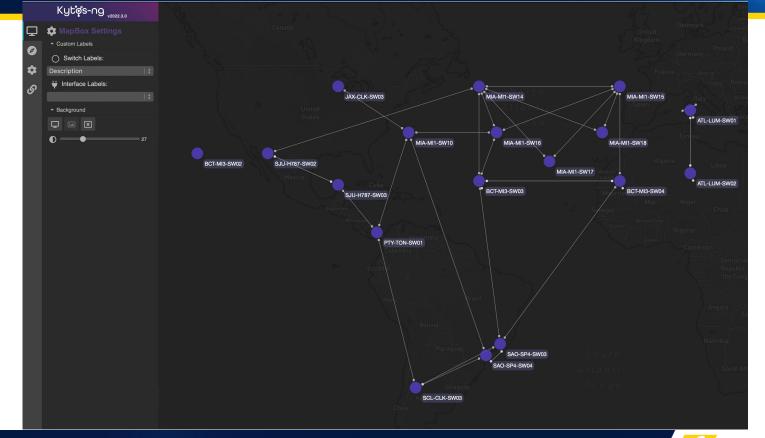
Control Plane

- Major transformation compared to the previous AmLight-ExP project
 - From multiple open-source solutions (ONOS, OESS, FloodLight, and Ryu) to a new solution (Kytos-ng)
- Brand new SDN controller built from scratch
- Built to be fully compatible with the new AmLight Data Plane
- Addresses the requirements of the AmLight community and science drivers:
 - Telemetry and pathfinding options

10

AmLiaht

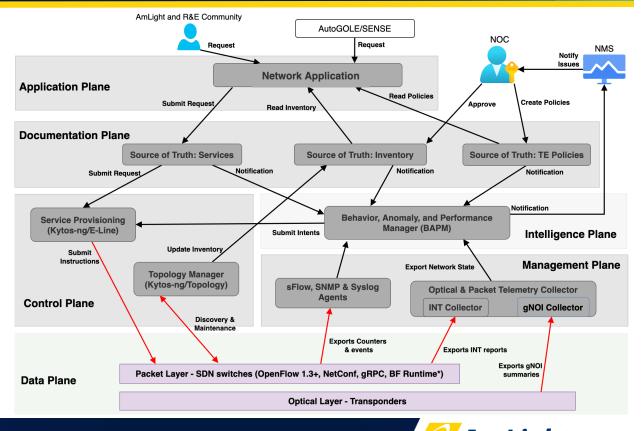
Control Plane - New Controller: Kytos-ng


- Development focused on the AmLight operation requirements:
 - Simple REST API following OpenAPI 2.0 specs
 - Pathfinder with support for multiple metrics and restrictions:
 - # of hops, minimum delay, max bandwidth, ownership, reliability, priority, average bandwidth utilization
 - Supports OpenFlow 1.3+ and gRPC (to support BFRuntime in the future)
 - Fully compatible with NoviFlow OpenFlow experimenter actions
 - Supports Ethernet Private Line (EPL) and Ethernet Virtual Private Line (EVPL)
 - Simple and fast development of new applications
 - Roadmap for 2023/24:
 - Integration with In-band Network Telemetry to add per-packet telemetry
 - Support per-flow Bi-directional Forwarding Detection (BFD)
 - Support for VLAN range

Kytos-ng is maintained by *FIU* and *rednesp* since May 2021 https://github.com/kytos-ng

Kyt**ʻ**ợs-∩g

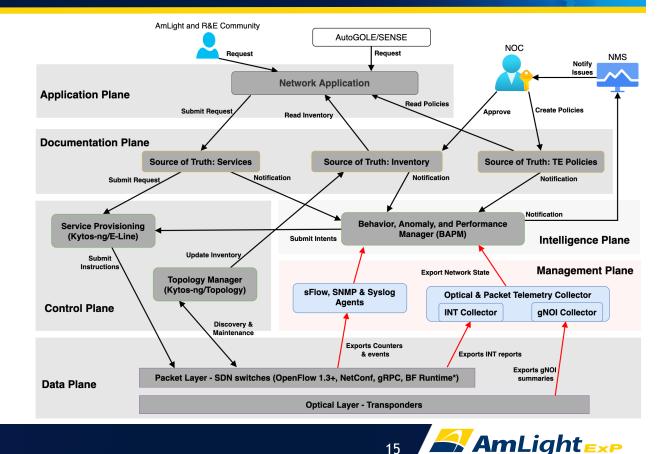
Control Plane - New Controller: Kytos-ng


Control Plane - New Controller: Kytos-ng

Kytởs-ng _{v2022.3.0}		View Connections by kytos/mef_eline										∎ ×
▼ Request E-Line Circuit	Ŧ	by kytoaniei_eine										
Circuit Name		Name	Switch A	Port A	Interf. A	VLAN A	Switch Z	Port Z	Interf. Z	VLAN Z	Enabled -	Active
→ Endpoint A												
Endpoint name:		Vlan_1507_1516_rednesp_amlight_demo_sc23_part1	MIA-MI1-SW14	27	novi_port_27	1507	MIA-MI1-SW14	32	novi_port_32	1507		\sim
		Vlan_1978_ANSP_TENET_part2	SAO-SP4-SW04	1000	novi_lport1000	1978	SAO-SP4-SW04	32	novi_port_32	1978		× .
← Endpoint Z		NSI-VLAN-1787-1799	MIA-MI1-SW18		novi_port_9	1787	JAX-CLK-SW03		novi_port_3	1799		× .
Endpoint name:		Vlan_940_rednesp_academic_pacific_part1	MIA-MI1-SW14		novi_port_9	940	PTY-TON-SW01		novi_port_2	940		\sim
→ VLAN Z		Vlan_2011_RNP	MIA-MI1-SW14		novi_port_9	2011	SAO-SP4-SW03	25	novi_port_25	2011		×
		Vlan_133_FIU_Fabric_I2_part2	MIA-MI1-SW10		novi_port_3	133	MIA-MI1-SW17		novi_port_7	133		1
→ service level value		Vlan_1623_RNP_Transport_Embrapa-Te	SAO-SP4-SW04	1000	novi_lport1000	1623	SAO-SP4-SW03	25	novi_port_25	1623		\sim
→ southbound priority		Vlan_347_346_MIA-Loop_Sp3	MIA-MI1-SW10		novi_port_1	347	SAO-SP4-SW03		novi_port_10	346		\sim
→ QoS Egress Queue		Vlan_1505_1513_rednesp_amlight_demo_sc23_part3	SAO-SP4-SW04	32	novi_port_32	1399	SAO-SP4-SW04	18	novi_port_18	1513		\sim
none 🕴		Vlan_2519_NSI_static_transport_part2	SAO-SP4-SW04		novi_port_2	2519	SAO-SP4-SW03		novi_port_8	2519		~
🏚 Request Circuit		Vlan_2501_NSI_static_transport_rnp_part2	SAO-SP4-SW03	30	novi_port_30	2501	SAO-SP4-SW03		novi_port_1	2501		\sim
✓ List EVCs		Vlan_250_RedClara_Shim-RENATA-TelxiusColombia	PTY-TON-SW01	318	novi_port_318	250	PTY-TON-SW01	1000	novi_lport1000	250		~
₩ List installed EVC	13	Vlan_2516_NSI_static_transport_rnp_part2	SAO-SP4-SW03	30	novi_port_30	2516	SAO-SP4-SW03		novi_port_1	2516		\sim
	14	Vlan_1508_1518_rednesp_amlight_demo_sc23_part4	SAO-SP4-SW04		novi_port_3	1508	SAO-SP4-SW04	1000	novi_lport1000	1518		\sim
	15	NSI-VLAN-1791-1791	MIA-MI1-SW10		novi_port_3	1791	MIA-MI1-SW18		novi_port_9	1791		1

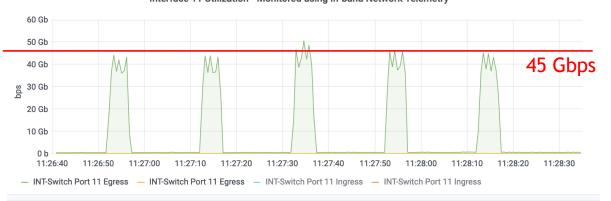
Data Plane - Forwarding and Telemetry

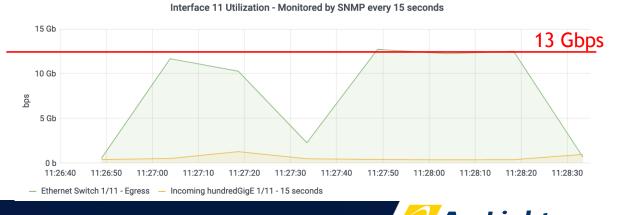
- Second major transformation compared to the previous AmLight-ExP project
- Legacy switches replaced by Edgecore switches and NoviFlow's Noviware
- Support for 100Gbps and 400Gbps
- Support for OpenFlow 1.3+1.4 & BFRuntime
- Supports In-band Network Telemetry (INT) for per-packet telemetry
- From the optical layer, we collect RX power, Q-Factor, and other metrics for proactive monitoring



14

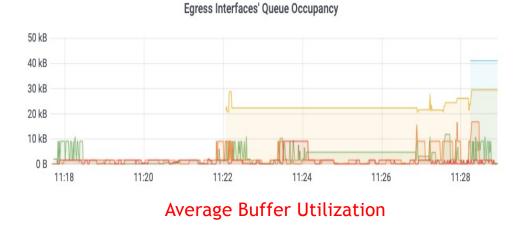
AmLiaht

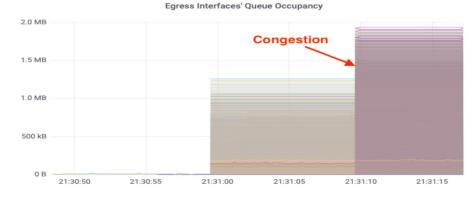

Management Plane


- In-band Network Telemetry (INT) exports telemetry reports per-second per-packet
 - Instantaneous bandwidth utilization
 - Instantaneous queue/buffer occupancy
 - Instantaneous hop and flow delays
 - Per-packet path trace
 - Microburst-detection
- Juniper Telemetry Interface (JTI) exports telemetry reports from Juniper MX204 routers:
 - Every 2 seconds for interface counters
 - Every 1 second for device's sensors
- Syslog, SNMP, and sFlow for legacy monitoring

Management Plane: Network Utilization

- 5 data transfers/bursts of 40-50Gbps for 5 seconds.
- Top: INT metadata exported in real time, per packet
- Bottom: SNMP get running as fast as supported by the switch: 14 seconds.


16


Amliant

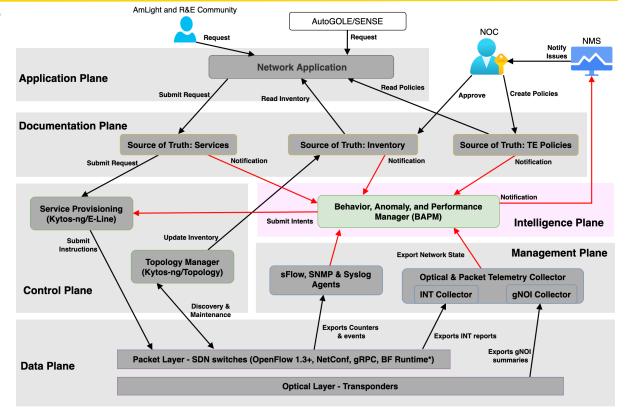
Americas Lightpaths Express & Protect

Interface 11 Utilization - Monitored using In-band Network Telemetry

Management Plane: Queue Occupancy

Under-Congestion Buffers

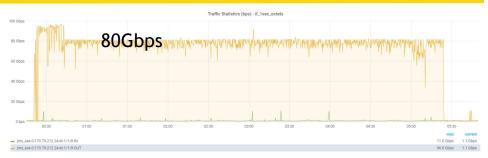
Intelligence Plane: Network Optimization


- 1. Gets inventory, policies, and services from the Documentation Plane
- 2. Gets telemetry reports from the Management Plane
- 3. Profiles AmLight's traffic every 100-500ms
 - Discovers performance issues and traffic anomalies
- 4. Makes suggestions to the Control Plane
 - Steer traffic, Load balance services, rate-limit, etc.

Creates a closed-loop for network optimization

- Goal is sub-second reaction and debugging
- Behavior, Anomaly, and Performance Manager (BAPM) is the component responsible for the intelligence

Example of policies:


- 80+% BW utilization >= 2s
- 50+% [Queue Occupancy] >= 2s
- Number of path changes >= 5 in 2h

Plans and Demos for SC23

- Evaluating AmLight's new capabilities at scale:
 - Leveraging native 400G ports to support research
 - New 100G links and programmable switches
 - New network control with Kytos-ng and its pathfinder application
 - At-scale INT monitoring and visibility
- Providing a platform for connectors to showcase their new infrastructure:
 - rednesp's new 100G backbone with 4x100G connections to AmLight
 - HPC in South Africa leveraging the AmLight's 100G link to Africa (top figure)
- Supporting diverse experiments and NREs with the amazing support from Caltech and SCInet (bottom figure):
 - Global P4 Lab
 - AutoGOLE/SENSE: End-to-End Network Services and Workflow Integration
 - High performance networking with São Paulo Backbone SP connecting 8 universities
 - PolKA routing approach to support traffic engineering for data-intensive science

AmLight 2.0: Flexible control, deep visibility, and programmability @ Tbps!

Jeronimo Bezerra - FIU/AmLight