

AmLight: International Connectivity

Jeronimo Bezerra <jab@amlight.net>

Outline

- >What is AmLight?
- > Network Connectivity
- Network Provisioning & Operation
- How AmLight supports the SA3CC community
- ➤ Conclusion

What is AmLight?

- A distributed academic exchange point built to enable collaboration among Latin America, Africa, and the U.S.
- Supported by NSF, OAC, and the IRNC program under award # OAC-2029283 for 2021-2025
- Partnerships with R&E networks in the U.S., Latin America, Caribbean and Africa, built upon layers of trust and openness by sharing infrastructure and human resources

AmLiaht_{exp}

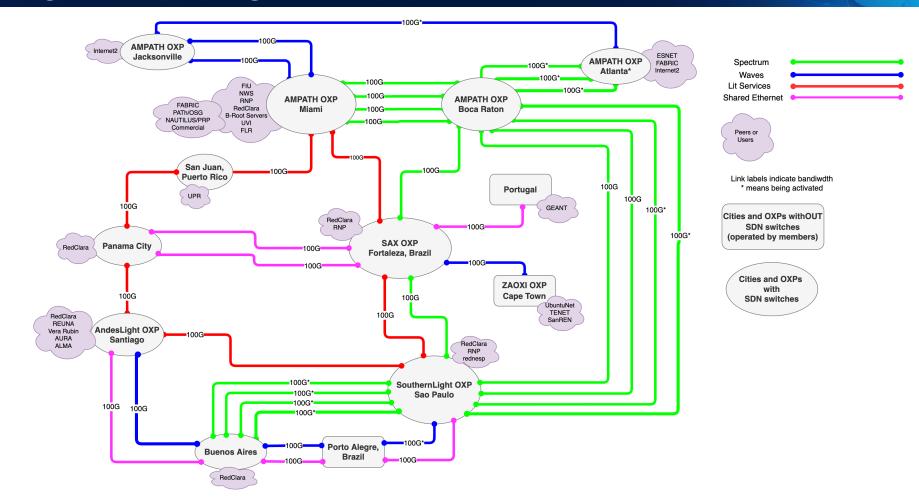
NSF 2021-2025 AmLight-ExP Project

- Vision:
 - Continue enabling collaboration among researchers and network operators in Latin America, Africa, and the U.S. by providing reliable, sustainable, scalable, and high-performance network connectivity and services.
- Focus:
 - Supporting Service Level Agreement (SLA)-driven science applications
 - Improving network visibility and management
 - Enabling integration between AmLight and network-aware science drivers
 - Adding new network and cloud services
 - Minimizing the human role in network operation

Network Connectivity ...

Network Connectivity

- 6x100Gbps of upstream capacity between the U.S. and Latin America, and 1x100Gbps to Africa
 - Ongoing actions for 2023/2024:
 - Extending spectrum on Monet from 75GHz to 112.5GHz
 - Adding 2x100Gbps between Brazil to the U.S.
 - Activating spectrum on TANNAT at 112.5GHz
 - Adding 4x100Gbps between Brazil and Argentina
 - Support LHC, Astronomy projects, network experimentation, SuperComputing experiments, and FABRIC
- 2+ Tbps of international connectivity
 - Mix of optical spectrum, optical waves, lit capacity, and shared services
- Multiple points of presence: Florida(3), Brazil(2), Chile, Puerto Rico, Panama, and South Africa
 - Ongoing action for 2023: Expanding to Atlanta, with 4x100Gbps of total capacity over spectrum and dedicated connections, to ESnet and FABRIC


Network Connectivity – Updates since 2022

- In 2022/2023, AmLight's main focus was on:
 - Replacing legacy network devices for fully programmable P4 switches
 - Improving network resilience by adding new links
 - Lowering OPEX (power consumption and rack space utilization)
 - Increasing the number of 100G access interfaces for users and science drivers
 - Improve network visibility
- Currently in production, there are 13 programmable switches:
 - Miami: 2 (2022) + 3 (2023)
 - Boca Raton: 1 (2021)
 - San Juan: 2 (2023)
 - Sao Paulo: 1 (2021) + 1 (2023)
 - Santiago: 1 (2022)
 - Panama City: 1 (2022)
 - Jacksonville: 1 (2022)

In 2023, 10 new switches will be added to production: Miami: 3 Boca Raton: 1 Santiago: 1 Jacksonville: 1 Atlanta: 2 Buenos Aires: 2

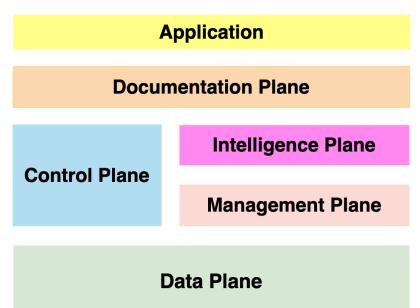
AmLight SDN Long-haul Links - 2023/2024

Network Provisioning...

AmLight SDN Architecture – 2014 - 2020

- From 2014-2020, we followed the "basic" SDN layers as in [1]
 - Application, Management, and Control Planes were very coupled under the same controller/orchestrator:
 - Each SDN Plane was operated as modules of the SDN controllers' software stack
 - Data Plane was a blend of vendors (Dell, Corsa, Brocade) with mixed support
 - Southbound Interface was OpenFlow 1.0 and OpenFlow 1.3
- The AmLight SDN Controller was responsible:
 - Provisioning L2VPN services
 - Handling fiber cuts and device outages by finding backup paths.
 - Load balance had to be performed manually.

Application	
Control Plane	Management Plane
Data Plane	



[1] IETF RFC 7626 & RFC 8597

AmLight SDN Architecture – 2021-2025

For 2021-2025, AmLight is enhancing its Software-Defined Networking (SDN) framework:

- New Data Plane based on programmable network device:
 - NoviFlow/EdgeCore P4 programmable switches
- New Management Plane for enhanced network visibility:
 - P4/In-band Network Telemetry (INT) for programmable switches
 - Juniper JTI for Juniper routers
- Brand-new Intelligence Plane:
 - The *Behavior, Anomaly, and Performance Manager* (BAPM) is being developed to learn the network state and create a sub-second closed-loop control
 - The 2023 IEEE NOMS paper "An Adaptive and Efficient Approach to Detect Microbursts Leveraging Per-Packet Telemetry in a Production Network" described one of the goals of BAPM.
- Brand-new Control Plane:
 - Kytos-ng SDN controller

Control Plane: Kytos-ng

- Kytos-ng is the next generation of the Kytos SDN Platform:
 - Open-source SDN controller since 2017
 - Maintained by FIU and rednesp since May 2021
 - First Kytos-ng release was launched on Feb 15th, 2022
 - Available at https://github.com/kytos-ng

- Kyt**ʻ**¢s-∩g
- Development focused on the AmLight operation requirements:
 - Pathfinder with support for multiple metrics and restrictions:
 - # of hops, minimum delay, max bandwidth, ownership, reliability, priority, average bandwidth utilization
 - Integration with In-band Network Telemetry to add per-packet telemetry
 - Supports for bandwidth reservation and prioritization
 - Supports for multiple southbound protocols OpenFlow 1.3+ and gRPC (P4Runtime)
 - Support for Point-to-Multipoint, BFD, VLAN range in the roadmap

Intelligence Plane

- 1. Gets inventory, policies, and services from the Documentation Plane
- 2. Gets telemetry reports from the Management Plane
- 3. Profiles AmLight's traffic every 100-500ms
 - Discovers performance issues and traffic anomalies
- 4. Makes suggestions to the Control Plane
 - Steer traffic, Load balance services, Rate-limit anomalies

Change of mindset compared to the previous AmLight-ExP project

- Creates the SDN closed-loop control to include policies
- Goal is to be prepared for sub-second reaction and debugging

Example of policies:

- If (80+% BW utilization >= 2s), then load-balance
- If (50+% [Queue Occupancy] >= 2s), then steer traffic
- If (Number of path changes >= 5 in 2h), then set *maintenance_mode*

How is AmLight supporting SA3CC?

- AmLight has a complex topology with plenty of paths and bandwidth:
 - From Chile to Jacksonville, there are more than <u>25</u> possible paths to take
 - With the new architecture, we expect to properly load balance network services across links, while respecting user constraints and requirements
- AmLight will handle any SLA-driven packet-loss-intolerant and sub-minute-response-time-expected science application:
 - With per-packet telemetry and sub-second network profiling capacities, AmLight will be prepared to react to network conditions under <u>1</u> second
 - AmLight aims <u>anticipate</u> issues with the substrate and steer traffic out of the substrate before adverse events happen
- Focus on engineering and automation:
 - With the closed-loop control, time-consuming operational activities will be performed without human intervention

Recent Presentations

• Understanding the impact of network microbursts to science drivers - 07/07/2023

- <u>https://youtu.be/_wronGw48os</u>
- Cl Engineering Lunch & Learn Series
- Detecting Network Microbursts at AmLight 04/21/2023
 - <u>https://youtu.be/1x-aVZTyyiM</u>
 - CI Engineering Lunch & Learn Series

• In-band Network Telemetry at AmLight - 03/18/2022

- <u>https://youtu.be/M6n_UZlhBQQ</u>
- CI Engineering Lunch & Learn Series

• Autonomic Network Architecture at AmLight - 02/25/2022

- <u>https://youtu.be/CRnKKuP9I3Y</u>
- CI Engineering Lunch & Learn Series
- Deploying per-packet telemetry in a long-haul network 11/21/2021
 - <u>https://www.youtube.com/watch?v=lVtY7dP7UGs&t=2s</u>
 - INDIS Workshop

AmLight: International Connectivity