

#### Evaluating INT, JTI, and sFlow @ AmLight

Renata Frez - Senior Network Engineer - RNP/AmLight

#### Overview

- Introduction to AmLight
- > Tools/Frameworks in use at AmLight
- > Juniper Telemetry Interface (JTI)
- In-band Network Telemetry (INT)
- How does In-band Network Telemetry (INT) work?
- Identifying Bursts: SNMP x JTI x INT (Tests)
- > But... What is within the bursts? Using sFlow
- > New: INT Collector 2.0 Detecting Microbursts
- Conclusion / Future Work



# Introduction to AmLight

- AmLight Express and Protect (AmLight-ExP) (NSF International Research Network Connections (IRNC) program)
- 600Gbps of upstream capacity between the U.S. and Latin America, and 100Gbps to Africa
- NAPs: Florida(3), Brazil(2), Chile, Puerto Rico, Panama, and South Africa
- Routers: Juniper and RARE/Freerouter
- Switches: Brocade, Dell, Corsa, Noviflow, and P4 Whiteboxes
- Production SDN Infrastructure since 2014:
  - Orchestrators: OESS and Kytos-NG
  - OpenFlow 1.0 and 1.3 as southbound interfaces
- Programmable Data Plane:
  - In production since 2021. Enables INT (In-band Network Telemetry) reporting
- Next step: Autonomic network architecture! More information: <u>https://www.youtube.com/watch?v=CRnKKuP9I3Y</u>





## Tools/Frameworks in use at AmLight

| Tool/Framework                       | Accuracy depends on:                                                                              | Challenges:                                                                                                                               | Used for:                                                                   |
|--------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| SNMP                                 | <ul> <li>Data Plane counters<br/>collection interval.</li> <li>SNMP collector polling.</li> </ul> | <ul> <li>➢ Low interval → higher CPU utilization.</li> <li>➢ High interval → lower accuracy.</li> </ul>                                   | General monitoring.                                                         |
| sFlow                                | Sampling rate.                                                                                    | <ul> <li>▶ Low sampling rate → more storage required → higher CPU utilization.</li> <li>▶ High sampling rate → lower accuracy.</li> </ul> | <ul> <li>Troubleshooting unusual events.</li> <li>TOP N reports.</li> </ul> |
| Juniper Telemetry Interface<br>(JTI) | Data sending interval.                                                                            | <ul> <li>≻ Low interval → more storage required.</li> <li>≻ High interval → lower accuracy.</li> </ul>                                    | Environments that<br>require more granular<br>information.                  |
| In-band Network Telemetry<br>(INT)   | Real time. Complete visibility.                                                                   | Processing all data collected in real time.                                                                                               | Troubleshooting short-<br>time events.                                      |



#### Juniper Telemetry Interface (JTI)

- As the number of devices and metrics generated by them has grown, the need for a non-impacting CPU tool has become critical.
- JTI is the Juniper telemetry solution that enables periodic data streaming as Protocol Buffers. In our environment, each device streams data every 2 seconds (lowest value for Packet Forwarding Engine Sensors).
- Examples of telemetry information streamed:
  - Interface counters, Optical counters, Routing information, Line Card information, and many others



### In-band Network Telemetry (INT)

- INT is a P4 application that records network telemetry data in the packet while the packet traverses a path between two points in the network
- Since telemetry is exported directly from the Data Plane, the Control Plane is not affected:
  Translation: you can track/monitor/evaluate EVERY single packet at line rate and in real time.
- Examples of telemetry information added:
  - Timestamp, ingress port, egress port, queue buffer utilization, sequence #, and many others



#### How does INT work?

1 – User sends a TCP or UDP packet unaware of INT Payload Payload 2 – First switch (INT Source Switch) Payload Payload Payload pushes an INT header + metadata Payload Payload Telemetry #1 3 – Every INT switch pushes its Node TCP/IP Telemetry #1 Telemetry #2 metadata. Non-INT switches just Telemetry #2 Telemetry #3 Telemetry #1 TCP/IP Telemetry #1 Telemetry #2 Telemetry #3 Telemetry #4 ignore INT content Telemetry #1 Telemetry #2 Telemetry #3 Telemetry #4 Telemetry #5 Node TCP/IP TCP/IP TCP/IP TCP/IP TCP/IP 4 – Last switch (INT Sink Switch) extracts the telemetry and forwards 5 Telemetry #1 INT Sink INT Switch INT Switch INT Switch **INT Source** original packet to destination Switch Telemetry #2 Switch 3 Telemetry #3 2 Telemetry #4 5 – Last switch (INT Sink Switch) Telemetry #5 forwards the 1:1 telemetry report to TCP/IP the Telemetry Collector Report Telemetry Collector



#### Simulations...



#### Demo Setup – Tools Comparison





## Identifying Bursts: SNMP x JTI x INT [Test 1]



Evaluating INT, JTI, and sFlow @ AmLight || Internet2 Technology Exchange – Dec 06th, 2022

AmLight Americas Lightpaths Express & Protect

## Identifying Bursts: SNMP x JTI x INT [Test 2]



Evaluating INT, JTI, and sFlow @ AmLight || Internet2 Technology Exchange – Dec 06<sup>th</sup>, 2022

11 Americas Lightpaths Express & Protect

## Identifying Bursts: SNMP x JTI x INT [Test 3]





# Identifying Bursts: SNMP x JTI x INT [Test 3]

Interval: 30s.

 2 Streams: Continuous and Burst.

Continuous Traffic: 20G.

Burst: 30x 30G.

Burst duration: 50ms.

Interval between bursts: 0.95s.

| Stream 1            | Traffic Generator Results |           |         |  |  |
|---------------------|---------------------------|-----------|---------|--|--|
|                     | Average                   | Minimum   | Maximum |  |  |
| Throughput (Gbit/s) | 19.8177                   | 19.7942   | 19.8473 |  |  |
| Jitter (ms)         | 0.00015                   | < 0.00001 | 0.01276 |  |  |
| Latency (ms)        | 0.03349                   | 0.01748   | 0.40493 |  |  |
|                     | Seconds                   | Count     | Rate    |  |  |
| Frame Loss          | 27                        | 68360     | 9.1E-03 |  |  |
| Out-of-Sequence     | 0                         | 0         | 0.0E00  |  |  |
| Stream 2            |                           |           |         |  |  |
|                     | Average                   | Minimum   | Maximum |  |  |
| Throughput (Gbit/s) | 1.1895                    | 1.1599    | 1.2128  |  |  |
| Jitter (ms)         | 0.00113                   | < 0.00001 | 0.38676 |  |  |
| Latency (ms)        | 0.39435                   | 0.01770   | 0.40517 |  |  |
|                     | Seconds                   | Count     | Rate    |  |  |
| Frame Loss          | 27                        | 115983    | 2.0E-01 |  |  |
| Out-of-Sequence     | 0                         | 0         | 0.0E00  |  |  |



#### But... What is within the bursts? Using sFlow





#### Improvements for INT Collector



#### New: INT Collector 2.0 – Detecting Microbursts

- The AmLight INT Collector 2.0 will support detecting microbursts as short as 10ms.
- The figure shows 10 microbursts, each lasting 20ms, using up to 19Gbps Microbursts.

| Start Time (UTC)              | Duration (s) | Max BW (Gbps) |
|-------------------------------|--------------|---------------|
| 2022-10-09T13:10:37.304385768 | 0.02         | 16.35         |
| 2022-10-09T13:10:37.400937960 | 0.02         | 17.44         |
| 2022-10-09T13:10:37.499991784 | 0.02         | 18.88         |
| 2022-10-09T13:10:37.598316288 | 0.02         | 19.01         |
| 2022-10-09T13:10:37.696891136 | 0.02         | 18.97         |
| 2022-10-09T13:10:37.795097088 | 0.02         | 18.91         |
| 2022-10-09T13:10:37.893028608 | 0.02         | 19.09         |
| 2022-10-09T13:10:37.992322792 | 0.02         | 18.66         |
|                               |              |               |
| 2022-10-09T13:11:58.794430952 | 0.06         | 53.41         |
| 2022-10-09T13:12:01.507265768 | 0.04         | 41.48         |
| 2022-10-09T13:13:21.666561768 | 0.04         | 20.83         |



1 second interval



## Conclusion / Future Work

- Monitoring every and any packet is possible with In-band network telemetry!
- $\succ$  JTI and INT have increased the network visibility beyond our expectations.
- Combining INT and legacy monitoring tools enables AmLight to track any performance issues and user complaints.
- New telemetry solutions will help achieve the Vera Rubin Observatory's Service Level Agreement (SLA).
- More tests are needed using sFlow to monitor interfaces' counters and compare the accuracy to other tools.
- Combining INT with learning tools will enable AmLight to move towards a closed-loop orchestration SDN network.
  - AmLight towards Autonomic Networking Architecture (ANA):
    - Self-configuration
    - Self-healing
    - Self-optimizing







### Evaluating INT, JTI, and sFlow @ AmLight

Renata Frez - RNP/AmLight <renata@amlight.net>