

Deploying per-packet telemetry in a long-haul network: the AmLight use case

Jeronimo Bezerra <jab@amlight.net>

Outline

- Why monitoring every packet?
- What is In-band Network Telemetry (INT)?
- How is AmLight using INT?
- Moving INT to production at AmLight
- Some Results
- Conclusion

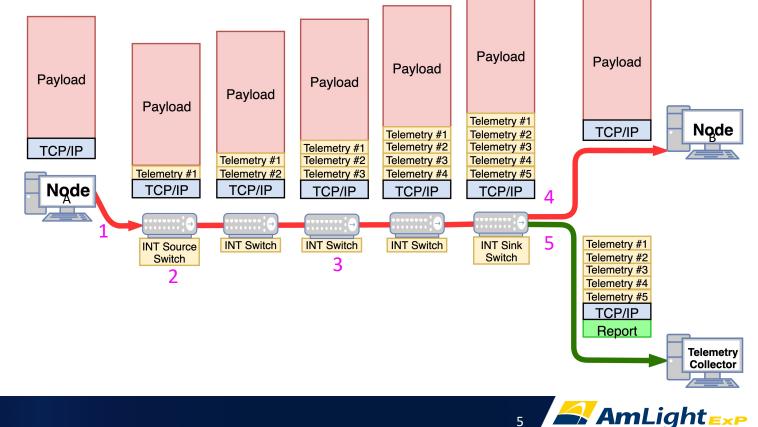
Why is AmLight interested in monitoring every packet?

- The need:
 - Monitoring real-time SLA-driven applications
 - Detecting [micro] bursts and events impacting AmLight's network functions and applications
- The challenge:
 - SNMP/OpenFlow counters: polling data is not recommended in a sub-15s interval.
 - Sampling technologies: export data after a few seconds.
 - Packet sniffing at 100G: high CAPEX and OPEX costs.
 - Streaming telemetry solutions: share summaries every second[s].

In-band Network Telemetry (INT)

- INT is a P4 application that records network telemetry information in the packet while the packet traverses a path between two points in the network
- As telemetry is exported directly from the Data Plane, the Control Plane is not affected:
 - Translating: you can track/monitor/evaluate EVERY single packet at line rate and in real time.
- Examples of telemetry information added:
 - Timestamp, ingress port, egress port, queue buffer utilization, sequence #, and many others

How does In-band Network Telemetry (INT) work?


1 – User sends a TCP or UDP packet unaware of INT

2 – First switch (INT Source Switch) pushes an INT header + metadata

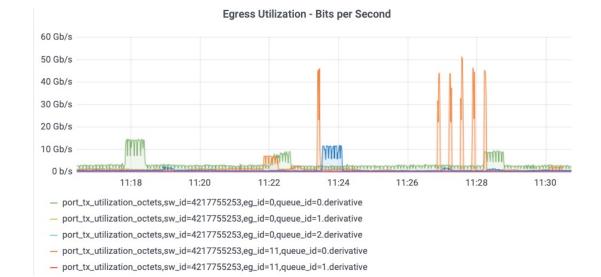
3 – Every INT switch pushes its metadata. Non-INT switches just ignore INT content

4 – Last switch (INT Sink Switch) extracts the telemetry and forwards original packet to destination

5 – Last switch (INT Sink Switch) forwards the 1:1 telemetry report to the Telemetry Collector

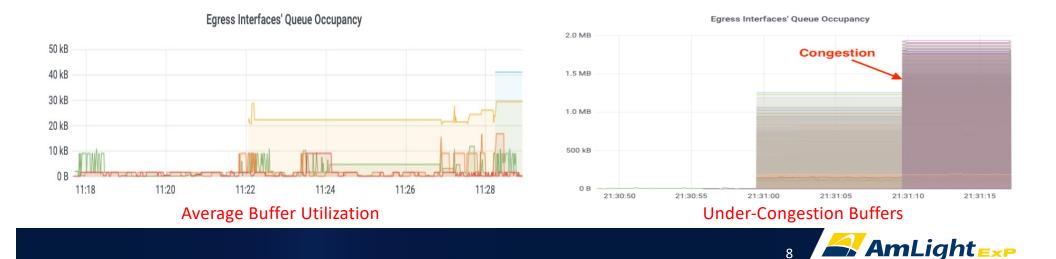
Americas Lightpaths Express & Protect

What INT metadata is being used and how? [1]


- The AmLight INT switches leverage the Tofino chip to collect:
 - Per switch:
 - Switch ID
 - Ingress port
 - Egress port
 - Ingress timestamp
 - Egress timestamp
 - Egress queue ID
 - Egress queue occupancy
 - Per telemetry report:
 - Report timestamp
 - Report sequence number
 - Original TCP/IP headers

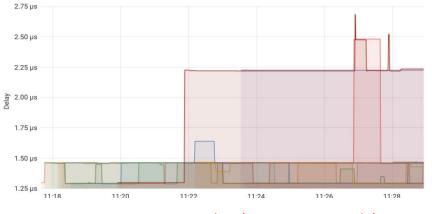
Out Time: 123144143 ns	
In Time: 123132143 ns	
	Occ: 15MB
Hop Delay: 12 us	
In: Port 1	Out: Port 2
Switch: 1	
Out Time: 124145243 ns	
In Time: 124144143 ns	
Queue: 0	Occ: 10KB
Hop Delay: 1.1 us	
In: Port 1	Out: Port 4
Switch: 2	
Out Time: 125146343 ns	
In Time: 125145243 ns	
Queue: 0	Occ: 10KB
Hop Delay: 1.1 us	
In: Port 31	Out: Port 28
Switch: 3	
Out Time: 126147443 ns	
In Time: 126146343 ns	
Queue: 0	Occ: 10KB
Hop Delay: 1.1 us	
In: Port 12	Out: Port 13
Switch: 4	
Out Time: 127187443 ns	
In Time: 127147443 ns	
Queue: 0	Occ: 21MB
Hop Delay: 40 us	
	Out: Port 7
Switch: 5	

What INT metadata is being used and how? [2]


- Instantaneous Ingress and Egress Interface utilization
 - Telemetry Collector monitors and reports egress interface utilization every 100ms*
 - Useful for detecting microbursts
 - 100ms can be tuned down if needed
 - Bandwidth monitored per interface & queue

What INT metadata is being used and how? [3]

- Instantaneous Egress Interface Queue utilization (or buffer)
 - AmLight monitors every queue of every interface of every switch:
 - Useful for evaluating QoS policies
 - Useful for detecting sources of packet drops


What INT metadata is being used and how? [4]

• Sources of jitter

- AmLight monitors per-hop per-packet forwarding delay:
 - Useful for evaluating sources of jitter along the path
 - Useful for mitigating QoS policy issues (under provisioned buffers)

Delay

Useful for mitigating traffic engineering issues (under and over provisioned links)

Average Hop Delay (in microseconds)

Hop Delay under congestion (in milliseconds)

Hop Delay for Novi07 - All VLANs

What INT metadata is being used and how? [5]

- Proof of Transit (PoF) or path taken (L1 traceroute)
 - Metadata used:
 - List of switches
 - Per switch:
 - Switch ID, Ingress port, Egress port, Egress queue ID
- AmLight is capable of path tracing EVERY packet and recording changes
 - Useful for detecting LAG or ECMP hash errors/mismatches
 - Useful for detecting unstable links
- Path taken even indicates *egress queue ID*:
 - Useful for evaluating QoS policies

Use Case: Mitigating [malicious] [micro] bursts

11:26:40

11:26:50

11.27.10

Ethernet Switch 1/11 - Egress – Incoming hundredGigE 1/11 - 15 seconds

11:27:00

11.27.20

- 5 data transfers/bursts of 40-50Gbps for 5 seconds.
- Top: INT metadata exported in real time, per packet
- Bottom: SNMP get running as fast as supported by the switch: 15 seconds.
- By leveraging legacy technologies, such as SNMP, troubleshooting microbursts – malicious or not – is a complex activity that won't be enough to characterize the microburst and determine its impact.

60 Gb 50 Gb 45 Gbps 40 Gb 30 Gb sd 20 Gb 10 Gb 0 b 11:26:40 11:26:50 11.27.00 11.27.10 11.27.20 11:27:30 11:27:40 11:27:50 11.28.00 11.28.10 11.28.20 11:28:30 INT-Switch Port 11 Egress — INT-Switch Port 11 Egress — INT-Switch Port 11 Ingress — INT-Switch Port 11 Ingress Interface 11 Utilization - Monitored by SNMP every 15 seconds 15 Gb 13 Gbps 10 Gb sdc 5 Gb 0 h

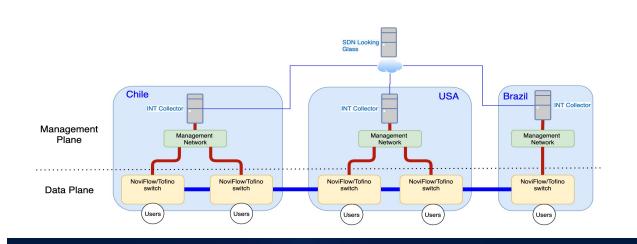
11:27:40

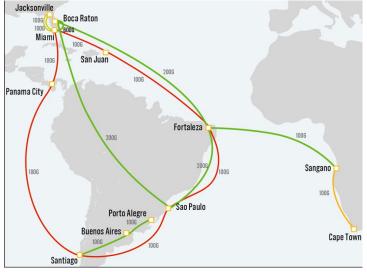
11:27:30

11:27:50

11:28:00

Interface 11 Utilization - Monitored using In-band Network Telemetry


11:28:10


11:28:20

11:28:30

Ongoing Deployment at AmLight [1]

- At each AmLight site, P4 switches are replacing the current data plane
- Each pop has a Telemetry Collector parsing Mpps of telemetry
- InfluxDB & Grafana combo to store and display reports
- Goal is for AmLight to be fully INT-capable by Q2/2022.

Ongoing Deployment at AmLight [2]

- How many high-priority flows can be handled in real-time by the INT Telemetry Collector?
 - Using eBPF/XDP for processing telemetry data
 - Currently capable of "processing" 10Mpps*
- What is the impact caused by INT in a complex network such as AmLight?
 - Delay: Pushing INT header takes around 0.00045 ms. No impact in a long-haul network.
 - MTU: Each switch adds 24bytes. Tofino chip has MTU of 10K. Legacy devices with shorter MTU in the path have to be considered.
- How to dynamically enable INT monitoring of specific flows?
 - AmLight SDN orchestrator is very flexible when selecting what to monitor (per-source, per-destination, TCP and UDP, per port, etc.)

- Monitoring every and any packet is possible with in-band network telemetry!
- INT has increased the network visibility beyond our expectations
- Combining INT and legacy monitoring tools enables AmLight to track any performance issue and user complain
- Combining INT with learning tools will enable AmLight to create reliable trends and move towards a closed-loop orchestration SDN network.

Demo! Demo! Demo! Demo!

- We will be showcasing our environment in a more interactive approach
 - Challenges, benefits, some screens, our setup, and future.
- Zoom link:
 - https://go.fiu.edu/sc21_demo
- Tomorrow, at 10:30 AM EST.

Join us!

Deploying per-packet telemetry in a long-haul network: the AmLight use case