

In-band Network Telemetry @ AmLight: Lessons Learned after 2 years

Jeronimo Bezerra <jab@amlight.net>

Outline

- In-band Network Telemetry
- AmLight-INT project after 2 years:
 - Original Goals
 - What we are monitoring
 - Challenges
 - Rolling out to production
 - Results
- What happens next?
 - New projects
- Future Challenges
- Team and Opportunities

In-band Network Telemetry (INT)

- INT is a P4 application that records network telemetry information in the packet while the packet traverses a path between two points in the network
- As telemetry is exported directly from the Data Plane, Control Plane is not affected:
 - Translating: you can track/monitor/evaluate EVERY single packet at line rate and real time.
- Examples of telemetry information added:
 - Timestamp, ingress port, egress port, queue buffer utilization, sequence #, and many others

Questions addressed by INT

- How did this packet get here?
 - The sequence of network devices a packet visited along its path (Proof-of-Transit).
 - LAG? No problem. ECMP? No problem. Layer 2 network? No problem!
- Why is this packet here?
 - The set of rules a packet matched upon at every switch along the way.
- How long was this packet delayed?
 - The time a packet spent buffered in every switch, to the nanosecond, from end-toend.
- Why was this packet delayed?
 - Who else was in the buffer that led to an increased delay?

INT: How does it work?

1 – User sends a TCP or UDP packet unaware of INT

2 – First switch (INT Source Switch) pushes an INT header + metadata

3 – Every INT switch pushes its metadata. Non-INT switches just ignore INT content

4 – Last switch (INT Sink Switch) extracts the telemetry and forwards original packet to user

5 – Last switch (INT Sink Switch) forwards the 1:1 telemetry report to the Telemetry Collector

Introduction to AmLight

- AmLight Express and Protect (AmLight-ExP) (NSF International Research Network Connections (IRNC) Award # <u>OAC-2029283</u>)
- 600Gbps of upstream capacity between the U.S. and Latin America, and 100Gbps to Africa
- Production SDN Infrastructure since 2014
 - OpenFlow 1.0, OpenFlow 1.3, and NSI
- NAPs: Florida(2), Brazil(2), Chile, Puerto Rico, Panama, and South Africa
- Driver for deploying INT: The Vera Rubin
 Observatory's Service Level Agreement (SLA)

AmLight-INT Project

- NSF IRNC: Backbone: AmLight In-band Network Telemetry (AmLight-INT), Award# OAC-1848746
 - Started in Nov 2018
- AmLight-INT Project Goals:
 - Develop and Deploy INT-capable switches
 - Deploy INT Telemetry Collectors to collect and process telemetry metadata
 - Develop a new methodology to collect and export INT data in real time to feed SDN controllers and users with monitoring information
 - Create a Network Telemetry Design Pattern to be used by other R&E networks

Americas Lightpaths Express & Pl

AmLight-INT Project [2]

- Collaboration between FIU and NoviFlow to expand AmLight SDN network towards an INT-capable domain
 - NoviFlow expanded the NoviWare OS to support INT following FIU's requirements
 - FIU developed the telemetry collector and evaluated the NoviFlow switch
- Characteristics of the NoviFlow WB5132 switches @ AmLight:
 - Barefoot Tofino chip:
 - Provides a software-based SDN evolution path to P4Runtime
 - 32 x 100G interfaces (high throughput: 3.2 Tbps)
 - NoviWare supports OpenFlow 1.3 and 1.4 with BFD and LAG (also P4Runtime)
- P4/INT 1.0 specification being followed [1]

Research challenges being addressed [1]

- How many high-priority flows can be handled in real-time by the INT Telemetry Collector?
 - Currently capable of "processing" 10Mpps* without extra workarounds and nodes.
- What is the impact caused by INT in a complex network such as AmLight-ExP?
 - Delay: Pushing INT header takes around 450ns. No impact in a long-haul network.
 - MTU: Each switch adds 24bytes. Tofino chip has MTU of 10K. Legacy devices in the path have to be considered.
 - Colocation: Every AmLight PoP needs colocation for the INT Telemetry Collector (telemetry is processed locally)
- How to dynamically enable INT monitoring of specific flows?
 - New OpenFlow 1.3 Experimenter Actions created (push_int, add_int_metadata, pop_int, send_report)
 - Enables AmLight to be very specific when selecting what to monitor (per-source, per-destination, TCP and UDP, per port, etc.)

Research challenges being addressed [2]

- What is the definition of real-time for the AmLight-INT project?
 - Receiving "instructions" from consolidated telemetry reports under 200ms
 - Collect telemetry data, process it, send summary to central location, process summaries from multiple telemetry collectors, generate an alert: under 200ms
 - Brazil and Chile are 55ms away in propagation delay.
- How to store and process multiple Gbps of telemetry data per switch/point of presence?
 - Each site has a high-speed management plane with one telemetry collector
 - Process: Using eBPF/XDP for processing telemetry data (Challenge 1)
 - Store: Waiting for Challenge #1. Not easy.
- How to share the network state with the users?
 - Summaries and events are stored in a time series database (influxDB)
 - Data visualization via Grafana
 - gRPC is the goal for users interested in consuming summaries in real time

What metadata is being used and how? [1]

- The AmLight INT switches leverage the Tofino chip to collect:
 - Per switch:
 - Switch ID
 - Ingress port
 - Egress port
 - Ingress timestamp
 - Egress timestamp
 - Egress queue ID
 - Egress queue occupancy
 - Per report:
 - Report timestamp
 - Report sequence number
 - Original TCP/IP headers

What metadata is being used and how? [2]

• Proof of Transit (PoF) or path taken

- Metadata used:
 - List of switches
 - Per switch:
 - Switch ID, Ingress port, Egress port, Egress queue ID
- AmLight is capable of path tracing EVERY packet and recording changes
 - Useful for detecting LAG or ECMP hash errors/mismatches
 - Useful for detecting unstable links
- Path taken even indicates *egress queue ID*:
 - Useful for evaluating QoS policies

What metadata is being used and how? [3]

- Instantaneous Ingress and Egress Interface utilization
 - Metadata used:
 - List of switches
 - Per switch:
 - Switch ID, Ingress port, Egress port
 - From the user TCP/IP header:
 - IP length
- AmLight's telemetry collector monitors and reports egress/outgoing interface utilization every 50ms*
 - Useful for detecting microbursts and precise bandwidth utilization
 - *50ms can be tuned down for shorter intervals if needed
 - Bandwidth can be monitored per queue

What metadata is being used and how? [4]

Instantaneous Egress Interface Queue utilization (or buffer)

- Metadata needed:
 - List of switches and their metadata
 - Per switch:
 - Switch ID, Egress port, Egress Queue ID, Queue Occupancy

• AmLight monitors every queue of every interface of every switch:

- Useful for evaluating QoS policies
- Useful for detecting sources of packet drops

What metadata is being used and how? [5]

- Sources of jitter:
 - Metadata needed:
 - List of switches
 - Per switch:
 - Switch ID, ingress timestamp, egress timestamp
- AmLight monitors per-hop per-packet forwarding delay:
 - Useful for evaluating sources of jitter along the path
 - Useful for mitigating QoS policy issues (underprovisioned buffers)
 - Useful for mitigating traffic engineering issues (underprovisioned links)

Challenge 1: Receiving telemetry reports

- 100Gbps with 9000-Bytes packets → ~1.5M packets per second
- At AmLight, 4-8 switches connect Chile to the U.S.
- Telemetry reports have up to 300 bytes
- Each user packet triggers a telemetry report (1:1)
- 4.5Gbps of telemetry report for each 100Gbps flow
 - Each switch creates a single flow (No hashing possible)
- Solution in place: eBPF/XDP (eXpress Data Path) [4]

XDP - eXpress Data Path

- A thin layer at lowest levels of network stack for incoming packets
 - Not a bypass
- Run-time programmability via "hook"
 - No need to recompile the Kernel
- Comparable to DPDK but simpler
 - No need for dedicated CPUs, huge memory pages, hardware requirements, or licensing)
- Can offload instructions to supported NICs if available
 - Examples: Netronome and Mellanox
- Use by service providers for DDoS mitigation
 - 20Mpps per node documented!
- Performance improvements observed:
 - From 5kpps with Python3 and C (user-space)
 - To 3 Mpps with XDP and one CPU
- Future Lunch and Learn Talk

Source: https://github.com/iovisor/bpf-docs/blob/master/Express_Data_Path.pdf

Challenge 2: Storing telemetry reports of interest

- Not feasible to save all telemetry reports (yet)
- Solution: XDP code only "stores" counters that report a change in the traffic behaviour:
 - A queue that increased/decreased more than 20KBytes
 - A flow path that changed
 - A hop delay >2 microseconds
 - A total delay > 50 microseconds
 - An egress interface that is using more than 80Gbps for more than 50ms

Challenge 3: Storing all telemetry reports for future research (ML/AI)

- Goal: Store as many telemetry reports as possible for future research to enable ML/AI researchers to have grounding truth for learning algorithms
- Each Vera Rubin Telescope (LSST) 5-second 13.6GB data transfer will generate ~337MB of telemetry data.
 - 1,334 observations/night: 450GB of telemetry data/night
- Challenges:
 - How to save Gbps of telemetry reports without increasing OPEX (rack space, power consumption, etc.)
 - How/Where/How long to store such data?
 - How to make it available preserving privacy but without compromising research?
 - What data is really necessary from the telemetry report?
 - What has to be combined with reports to give context? Topology?
- Challenge 3 is wide-open. AmLight is looking for collaborations. Let me know if you have suggestions!

Results and Products

INT Dissector for Wireshark

Int Shim

▼ Telemetry Header

 Telemetry Report Header Version: 0x00 Protocol Number: 0x00 Drop Bit: False Queue Bit: False Flow Bit: True Telemetry Header Reserved: 0x0000 Hardware ID: 0x01 Sequence Number: 0x0003a3b4 Ingress Timestamp: 0xa474b98e

Type: 0x01 Reserved 1: 0x00 Length: 14 Reserved 2: 0x00 Int Metadata Version: 0 Replication Requested: 0 Copy Bit: False Max Hop Count Exceeded: False Reserved Bits 1: 0x04 **Instruction Count: 5** Max Hop Count: 8 Total Hop Count: 2 Switch ID Bit: True Ingress + Egress Port ID Bit: True Hop Latency Bit: False Queue ID + Occupancy Bit: True Ingress Timestamp: True Egress Timestamp: True Queue ID + Congestion Status: False Egress Port Tx Utilization: False Reserved Instruction bits: 0x00

Reserved Bits 2: 0x497d

Int Metadata Stack Switch ID: 33 Ingress Port ID: 0 Egress Port ID: 16 Oueue ID: 0 Queue Occupancy: 2 Ingress Timestamp: 1014016357 Egress Timestamp: 1014016804 Int Metadata Stack Switch ID: 35 Ingress Port ID: 112 Egress Port ID: 16 Oueue ID: 0 Queue Occupancy: 2 Ingress Timestamp: 2267633190 Egress Timestamp: 2267633728

INT Telemetry Collector: Two Versions

- AmLight-INT Collector Python-edition:
 - Developed using Python 3.7
 - Parses and sends to a RabbitMQ queue to be consumed
 - Saves Telemetry Reports to disk
 - Tracks proof-of-transit
 - QueueTop via CLI
 - Useful for proof of concepts, protocol evaluations, and small testbeds (<5kpps)
 - High visibility, no reports are discarded.
 - Easy to use, upgrade, and install
- AmLight-INT Collector XDP-edition
 - Developed using eBPF/XDP (limited C code)
 - · Parses and sends metrics of interest to time-series database
 - Leverages Grafana for visualization of metrics
 - Useful for production environments with more than 5kpps of telemetry reports
 - Harder to upgrade and expand

Results

- AmLight-INT Collector's QueueTop application consumes INT data and display realtime monitoring of the network's queues
- Topology on the right created to enable experimentation
 - All links and devices are 100G
 - Novi03 switch port 04 has a bottleneck: Node 03 and Node 04 are sending data to their peers.
 - Let's see what happens next...

Example of telemetry flow entries

[FLOW_ID3]		[FLOW_ID18]	
Timestamp	= Fri Jan 22 03:12:29 2021	Timestamp	= Fri Jan 22 03:11:05 2021
TableId	= 0	TableId	= 0
ofp_version	= 6	ofp_version	= 6
		ControllerGroup	
ControllerGroup		ControllerId	= cli
ControllerId	= cli	Priority	= 400
Priority	= 400	Idle_timeout	
Idle_timeout	= 0	Hard_timeout	= 0
Hard_timeout	$= \emptyset$	Importance	= 0
Importance	= 0	Packet_count	= 0
Packet_count	= 0	Byte_count	= 0 = 0
	= 0	Cookie Send_flow_rem	= 0 = false
Byte_count		Persistent	= false
Cookie	= 0	[MATCHFIELDS]	= Tulse
Send_flow_rem	= false		$IN_PORT = 18$
Persistent	= false		VLAN_VID = 116(0FPVID_PRESENT=1)
[MATCHFIELDS]		[INSTRUCTIONS]	VEAN_VID = IIO(ON VID_NESENTEI)
OFPXMT_OFB_1	$IN_PORT = 16$		
	VLAN_VID = 101(OFPVID_PRESENT=1)	ΓΑCTΙΟ	NST
[INSTRUCTIONS]			PAT_EXPERIMENTER]
			[ADD_INT_METADATA]
			OFPXMT_OFB_VLAN_VID = 102(OFPVID_PRESENT=1)
EOFF	PAT_EXPERIMENTER]	[OF	PAT_OUTPUT]
	[PUSH_INT]		port = 16

Example: Queue 0's Occupancy

Americas Lightpaths **Express & Protect**

One Source - One Destination - TCP - ~60Gbps

- Node 04 sending data using TCP to Node 02 at ~50Gbps
- No other traffic
- Top:
 - All Queues are using 114-115 cells (or 9K bytes)
- Bottom:
 - Hop Delay around 1 microsend (except for Novi03 that ADDs INT header)

QueueTop 0.1																											R€	ep	0	۰t	s:	12	9	75	5	M	ΓU]	[s	SI	JE	es	l											
List of Device	s, Interf	face	es	,	Qı	Je	eu	es	s,		ar	nc	ł	Qı	ue	eu	le	()c	:C	u	pc	In	C	y:																													
					Ţ		-			-										-			-			•																									_			_
Novi01	32																																																					
Novi04		0																																																				
Novi05	2	0		[]	J																																													11	5	Ce	11	s]
Novi02	3	0		[]	I																																													11	4	Се	11	s]
Novi03	4	2		٢١	Π																																				I			I						11	4	Ce	11	s]

QueueTop 0.1 List of Device															lep	001	rt	s:	8	38	М	ΠU	I	S	su	es	:	0													
 Novi01	 32	 0			 	 	 		 		 		 					11		11												11						899) r	าร	
Novi04	3	0	Ē																																	I	1(014	1 I	าร	
Novi05	2	0	Ε																																		(905	5 1	าร	
Novi02	3	0	[1(012	2 1	าร	
Novi03	4	2	E																														I				2	177	7 r	ns_	

QueueTop – Queue Occupancy Monitor

 Monitors all switches' interfaces' queues in real time

ueueTop 0.1																						Re	epc	rt	:S:	1	.29	75	М	TU	Ι	SS	ue	S:	()												
ist of Device	es, Interf	ace	s,	C	Qu	eı	les	s,	(an	d	Q	ue	eue	j	0c	CL	ıрс	n	су	•																											
 lovi01	 32						. <u>.</u> .		 											 	-	11			П	11	П	11	П	11	П	11	П				11	11	11		11	11	11	11	5	Ce	11	9
lovi04	3	0																																										11	.5	Ce	911	ļ
lovi05		0																																														
lovi02		0																																														
lovi03	4	2	[I																																								11	4	Се	911	

			ices: 5 Interfaces: 5 Queues: 5 Reports: 29859 MTU Issues: 0 s, Queues, and Queue Occupancy:	
Novi01	32	0	[!!!!!!!!!	941 ns]
Novi04	3	0	[!!!!!!!!!!	1100 ns]
Novi05	2	0	[!!!!!!!!!	912 ns]
Novi02	3	0	<u>[</u> []]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	1088 ns]
Novi03	4	0		9358 ns]

QueueTop + InfluxDB + Grafana

QueueTop + InfluxDB + Grafana

QueueTop + InfluxDB + Grafana

Ongoing Deployment

- At each pop, NoviFlow/Tofino switches are being deployed to replace existing devices
- Each INT pop has a Telemetry Collector gathering Gbps of telemetry and uploading Kbps of network state of the SDN Looking Glass
- A new Control Plane was created to replace the legacy environment using OpenFlow 1.3, gRPC, and P4.

Conclusions

- Monitoring every and any packet is possible with in-band network telemetry!
- INT has increased the network visibility beyond our expectations
- Combining INT and legacy monitoring tools will enable AmLight to track any performance issue and user complain
- Combining INT with learning tools will enable AmLight to create reliable trends and move towards a closed-loop orchestration SDN network.
- What happens next?

Future

- Maximize the benefits of the current INT substrate:
 - NSF CC* Q-Factor: A Framework to Enable Ultra High-Speed Data Transfer Optimization based on Real-Time Network State Information provided by Programmable Data Planes – Award 2018754
 - FIU and ESnet
 - PI(s): Jeronimo Bezerra, Julio Ibarra, and Richard Cziva
 - Start Date: Oct 15th, 2020 (2 years)
 - Goal: Extending the management plane to high performance DTNs for better visibility
 - NSF IRNC AmLight-ExP: Americas-Africa Lightpaths Express and Protect Award 2029283
 - FIU, USC, and Vanderbilt
 - PI(s): Julio Ibarra, Heidi L. Morgan, Chip Cox, and Luis Lopez
 - Start Date: Dec 15th, 2020 (5 years)
 - INT Goal: Developing learning systems to consume INT and policies to create a closed-loop orchestration
 - NSF IRNC AtlanticWave-SDX: A Distributed Intercontinental Experimental Software Defined Exchange– Award 2029278
 - FIU, USC, and RENCI
 - PI(s): Julio Ibarra, Heidi L. Morgan, Yufeng Xin, and Jeronimo Bezerra
 - Start Date: Dec 15th, 2020 (5 years)
 - INT Goal: Developing learning and telemetry systems to export different formats of intra-domain telemetry to support inter-domain provisioning and visibility

Q-Factor

- Objective: Improve data transfers over long-haul high-bandwidth programmable networks
- How: Creating an end-to-end framework where endpoints would have network state information to dynamically tune data transfer parameters in real time
 - Bandwidth and resources optimization
- Transformative:
 - Q-Factor will enable endpoints to adapt their data transfers to the network conditions in real time, avoiding packet drops, extra jitter/delays, and excessive memory consumption.
- Summary of proposed activities:
 - Expanding the Management Plane to endpoints
 - Developing a Telemetry Agent to consume network state information and tune endpoints
 - Evaluating tuning at scale over multiple scenarios by leveraging AmLight and Esnet networks and testbeds

35

AmLight-ExP

INT-related objective: Closed-loop network orchestration by leveraging telemetry reports from the packet and optical layers, combined with Machine Learning algorithms

Roadmap: Self-Optimizing the network:

- Year 2: < 5 seconds
- Year 3: < 2 seconds
- Year 4: < 1 second
- Year 5: < 500 ms

The Team

• FIU team:

- Arturo Quintana Sr. Software Developer
- Julio Ibarra PI
- Italo Valcy Sr. Network Engineer
- Jeronimo Bezerra Chief Network Architect
- David Ramirez REU Student

NoviFlow:

Arun Paneri - Director of Engineering Bryan Kerl - Director, Strategic Accounts Darrell Irons – Director, Customer

Support and Operation

Positions Open! Please share them!

- 3x Sr. Software Developer (@FIU)
- 1x Network Engineer (@FIU)
- 1x Postgrad (@Esnet)

More info at https://careers.amlight.net

In-band Network Telemetry @ AmLight: Lessons Learned after 2 years

Jeronimo Bezerra <jab@amlight.net>

References

- 2. AmLight: http://www.amlight.net
- 3. Bezerra, J., Arcanjo, V., Ibarra, J., Kantor, J., Lambert, R., Kollross, M., Astudillo, A., Sobhani,S., Jaque, S., Petravick, D., Morgan, H., Lopez, L., "International Networking in support of Extremely Large Astronomical Data-centric Operations". Presented at Astronomical Data Analysis Software and Systems (ADASS XXVII) conference, Santiago, Chile, October 22-26, 2017. http://www.adass.org/
- 4. NoviFlow : <u>http://www.noviflow.com</u>
- 5. XDP: <u>https://www.iovisor.org/technology/xdp</u>
- 6. N. V. Tu, J. Hyun, G. Y. Kim, J. Yoo and J. W. Hong, "INTCollector: A Highperformance Collector for In-band Network Telemetry," *2018 14th International Conference on Network and Service Management (CNSM)*, Rome, 2018, pp. 10-18.

