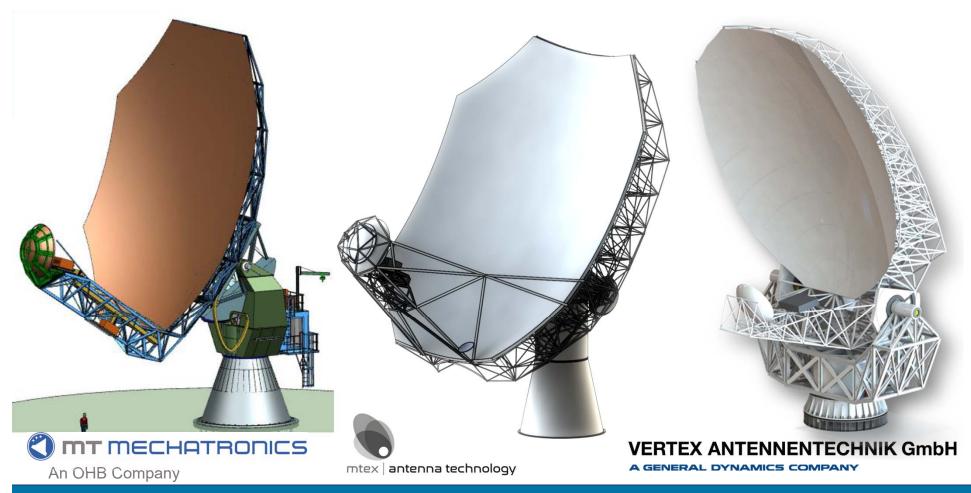


ngVLA Project Update

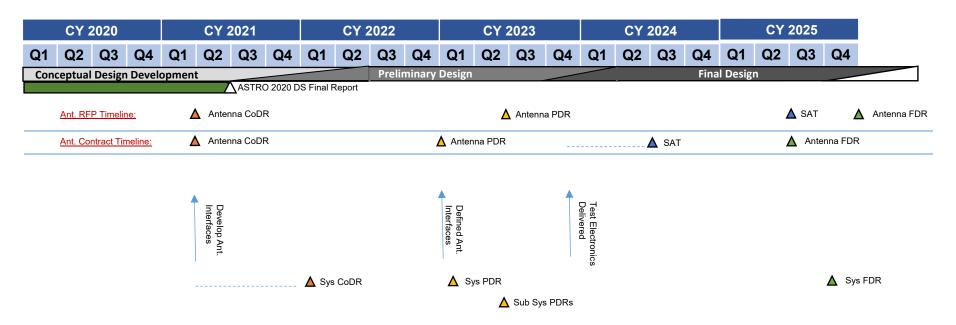
Rob Selina - ngVLA Project Engineer

South America Astronomy Coordination Committee, 04/2021



A next generation VLA

- Scientific Frontier: thermal imaging at milli-arcsecond resolution
 - 10x Sensitivity, 10-100x Resolution of VLA
 - Frequency range: 1.2-116 GHz
- Bridge SKA ALMA
- Proposal driven, pointed telescope
 - Deep single fields, small area mapping.
- Centered on present location of VLA in Southwest USA
- Under evaluation as part of the Astro2020 Decadal Survey.



Next Generation Very Large Array (ngVLA) Project Timeline

Sys CoDR: All high-level conceptual decisions; driving subsystem requirements.

Sys PDR: Focus is on architectural definition. Interfaces settled by Sys. PDR. Precedes sub-system PDRs.

Sub. Sys PDRs: Demonstrate prototype-ready design.

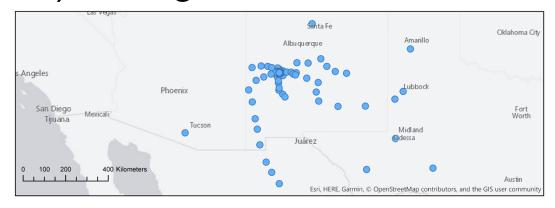
Construction: 2025-2035

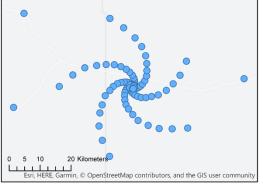
Operations: 2028+

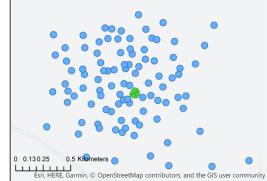
- 1.2 116 GHz Frequency Coverage
- Main Array: 214 x 18m offset Gregorian Antennas
 - Fixed antenna locations across NM, TX, AZ, MX.
- Short Baseline Array: 19 x 6m offset Greg. Antenna
 - Use 4 x 18m in TP mode to fill in (u, v) hole

НZ
.3
.8
.2
5.5
0.0
5.0

• Long Baseline Array: 30 x 18m antennas located across continent for baselines up to 8860km

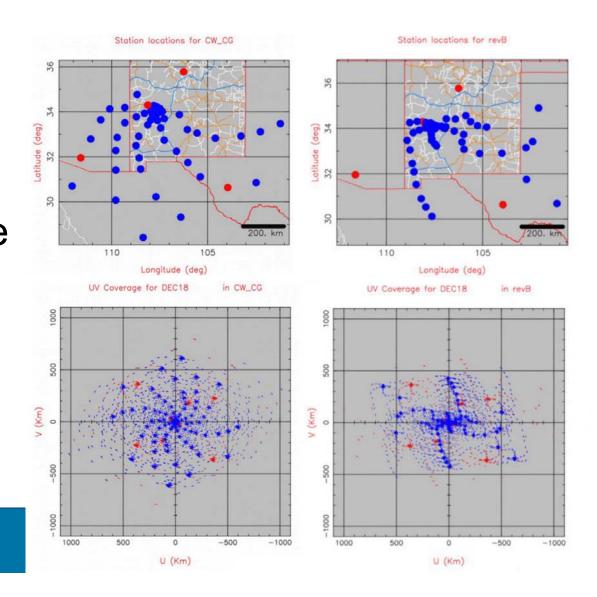





Main Array (MA) Configuration

• 214 x 18m Antennas

Radius	Collecting Area
	Fraction
0 km < R < 1.3	44%
km	
1.3 km < R < 36	35%
km	
36 km < R <	21%
1000 km	



Mid-Scale Baseline Optimization: the Walker Configuration

Long Baseline Array (LBA)

- 30 x 18m Antennas at 10 sites
- Balance between Astrometry & Imaging Use Cases

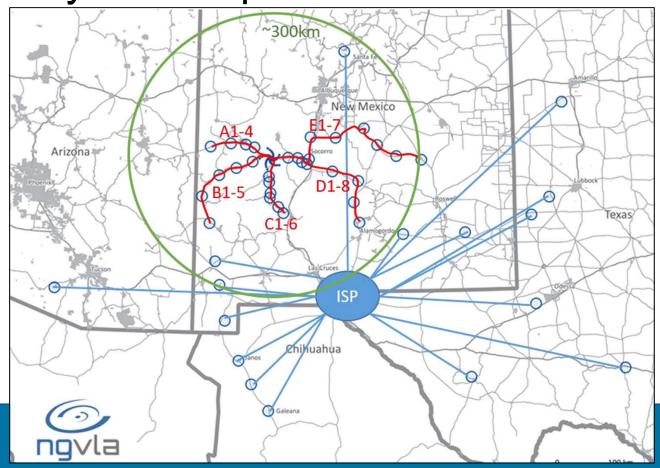
Qty	Location	<u>Possible</u> Site
3	Puerto Rico	Arecibo Site
3	St. Croix, US VA	VLBA Site
3	Kauai, HI	Kokee Park Geo. Obs.
3	Hawaii, HI	New Site (off MK)
2	Hancock, NH	VLBA Site
3	Westford, MA	Haystack
	Green Bank WV	GBO
2	Brewster, WA	VLBA Site
3	Penticton, BC, CA	DRAO
4	North Liberty, IA	VLBA site
4	Owens Valley, CA	OVRO

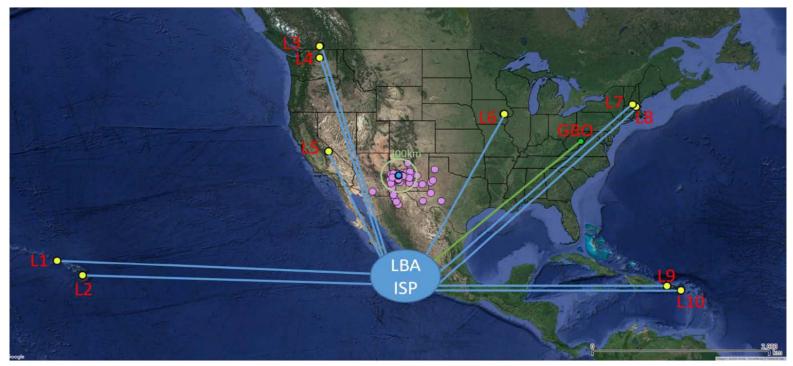
Arecibo Observatory LBA Site

- Proposals submitted to NSF for 1-8 LBA 18m ngVLA Antennas, associated infrastructure.
 - Joint proposals with UPR, UCF, AO.
 - Includes 100 gbps fiber link from AO to Internet2.
- Feedback expected May-June
- Full proposal (8 Antenna option) due Sept.
- Oct 2022 project start, if funded.

Antenna Data Rates

- Real-time correlation of all 244 18m array elements.
- Up to 20 GHz of instantaneous bandwidth per polarization.
- 8-bit digitization at all bands.
- 723 Gbps per antenna, over 8x100 / 2x400 Gbps links on ngVLA installed fiber.
- Requantized and formatted for data transmission on packetswitched networks
- ~3 antenna LBA sites = ~1 Tbps link (goal, TBC)




Main Array Fiber Optic Network

- Dedicated point-to-point fiber links for ~196 antennas in NM within ~300 km radius of core.
- ISP connected elements beyond inner stations.
- ISP connections to LBA sites.
- Leased fiber vs spectrum vs bandwidth (TBD)

VLB Fiber Optic Network

Facility Integration

- VLBI Recording Capabilities:
 - 3 beams, VDIF, Mark-X recorder standard
- eVLBI Integration:
 - ~270 element correlator
 - Built-in data buffers and packet re-ordering for packet switched network interfaces.
 - Real time links to GBT? LMT? ALMA? Others?

Data Processing

- Post Processing: storing the raw visibilities will be possible.
 - Data processing is post-facto, with system sized for average throughput.
 - Data Rates:
 - Average 8 GB/s.
 - Peak 128 GB/s.
- Computing: Challenging, but feasible with current technology.
 - Sized by time resolution, spectral resolution, and multi-faceting in imaging.
 - ~60 PFLOPS/s (inc. efficiency factors) matches average data throughput.

Serving Data to Users

- "Science Ready Data Products" Operations Model
- Process-in-place for data to most Pls.
- Data products requested in proposal; Pipeline interaction possible.
- Low-level data products (visibilities, flagging tables)
- High-level data products for Standard Observing Modes (e..g, calibrated image cubes)
- Archive reprocessing interface for users.
- Data Reduction S/W; Data Analysis S/W
- Distributed archive and re-processing capacity amongst international partners. (ALMA-like model)

SAACC Considerations

- ngVLA will require a significant investment in new fiber optic infrastructure in the Southwest USA, with connections across North America.
- Are there areas of collaboration with SAACC members?
- Pitfalls or lessons learned we should consider in our design phase?

