

AmLight-INT: In-band Network Telemetry @ AmLight

Jeronimo Bezerra - IT Associate Director/FIU

Arun Paneri – Director of Engineering/NoviFlow

- Network Monitoring: Current Limitations and Technologies
- Introduction to Network Telemetry
- Current Network Telemetry Efforts
- Telemetry at AmLight: A Use Case
- Next Steps

Challenges to [Academic] Network Operators

- [Academic] network monitoring and operation have never been so diverse:
 - Big data applications, dynamic circuits, clouds, SDN/SDX, compute/storage & network integration, network security, optical spectrum sharing, federation, ...
 - Sometimes, network applications require real-time SLA-driven performance
 - Sometimes, inter-domain
- For network operators, we are monitoring and measuring network utilization and performance using tools designed for a completely different scenario
 - Such tools can collect counters based on samples or on-demand (SNMP, NetFlow...)
 - Port-mirror and network taps impose huge challenges for scalability
- Any network performance assessment performed in such environment is extremely complex and time-consuming
 - Especially complex when real-time answers are needed

Introduction to Network Telemetry

- Network telemetry is the extension of network reporting to higher granularities and sample rates combined with actionable metrics and alerting [1]
- Network telemetry technologies define several characteristics [2]:
 - Push and Streaming: Instead of polling data from network devices, the telemetry collector subscribes to the streaming data pushed from data sources in network devices.
 - The data is normalized and encoded efficiently for export.
 - The data is model-based which allows applications to configure and consume data with ease.
 - Network telemetry means to be used in a closed control loop for network automation
 - Also known as *streaming network telemetry* or *streaming telemetry*
- Streaming network telemetry is very useful to detect microburst and queue utilization at a sub-second interval
- With all historic network state, forensic troubleshooting is enabled

Example: Microbursts vs. Telemetry

Example: Microbursts vs. Legacy Monitoring

Source: https://www.arista.com/assets/data/pdf/TechBulletins/AristaMicrobursts.pdf

New Telemetry Trends @ IETF and ONF

- In 2016, P4.org group create a new P4 application:
 - In-band Network Telemetry (2016)
- IETF Internet Protocol Performance Measurement (ippm) WG:
 - Proof of Transit (2016)
 - Encapsulations for In-situ OAM Data (2017)
 - Data Fields for In-situ OAM (2017)
 - Requirements for In-situ OAM (2018)
- IOAM, In-situ OAM, In-band OAM, INT, In-band Network Telemetry are used interchangeably in *this* presentation.

In-band Network Telemetry (INT)

INT is an implementation to record operational information in the packet while the packet traverses a path between two points in the network:

- Complements current out-of-band OAM mechanisms based on ICMP or other types of probe packets.
- Basically, INT adds metadata to each packet with information that could be used later for troubleshooting activities.
- Example of information added:
 - Timestamp, ingress port, egress port, pipeline used, queue buffer utilization, WiFi link power, CPU utilization, Battery Utilization, Sequence #, and many others
- As metadata is exported directly from the Data Plane, Control Plane is not affected:
 - Translating: you can track/monitor/evaluate EVERY single packet at line rate.

Issues addressed with In-band Network Telemetry

- Per Interface's Buffer Occupancy
 - Identifying sources of delay and jitter
 - Packet drop mitigation
- Proof-of-transit
- Instant bandwidth availability and micro-bursts detection
- Packet loss mitigation
- Rogue traffic identification
- TCP performance mitigation

In real-time and at line-rate!

Introduction to AmLight

- AmLight Express and Protect (AmLight-ExP) (NSF International Research Network Connections (IRNC) Award #1451018)
- 680Gbps of upstream capacity between the U.S. and Latin America
- Production SDN Infrastructure since 2014
- NAPs: Florida(2), Brazil(2), Chile, Puerto Rico, and Panama
- Carries Academic and Commercial traffic
- Control Plane: OpenFlow 1.0 and 1.3
- Inter-domain Provisioning with NSI
- A consortium involving FIU, NSF, RNP, ANSP, CLARA, REUNA, and AURA.

The Use Case: Large Synoptic Survey Telescope (LSST)

Telemetry at AmLight: LSST Use Case [2]

- What if the LSST doesn't manage to send its data in its 5-seconds transfer window?
 - For instance, because of packet loss, lack of capacity, lack of buffers, microburst, DoS attacks?
- If the data transfer window is missed, will AmLight engineering team be able to fix whatever it is happening before the next data transfer window (in less than 22 seconds)?
- How many windows are we going to miss if we troubleshoot it manually?

AmLight-INT Project

- NSF IRNC: Backbone: AmLight In-band Network Telemetry (AmLight-INT), Award# OAC-1848746
 - Started in Nov 2018
 - Collaboration with NoviFlow
- AmLight-INT Project Plan:
 - Deploy P4/INT-capable switches
 - Deploy INT Collectors (100G hosts) to collect metadata
 - Develop a new methodology to collect and export INT data in real time to feed SDN controllers and users with monitoring information
 - Create a Network Telemetry Design Pattern to be used by other R&E networks

13

AmLiaht

Americas Lightpaths **Express & Protect**

AmLight-INT Project

- Collaboration between FIU and NoviFlow to expand AmLight SDN network towards an INT-capable domain
- Characteristics of the NoviFlow switches in use at AmLight:
 - Barefoot Tofino chip:
 - Provides a software-based SDN evolution path to P4-Runtime
 - 32 x 100G (high throughput: 3.2 Tbps)
 - NoviWare supports OpenFlow 1.3 (also 1.4 and 1.5) with BFD and LAG
- NoviFlow has already released five NOS versions to enable INT
 - P4/INT specification being followed
 - Nothing is proprietary or strictly created to support the LSST project

Some Results

- Wireshark Dissector created NoviFlow (figure)
- AmLight-INT Collector v0.1:
 - Developed using Python 3.7
 - Receives Telemetry Reports from switches
 - Parses and sends to a RabbitM queue to be consumed
 - Saves Telemetry Reports to dis

	 Felemetry Header Ethernet II, Src: 98:03:9b:99:55:2a (98:03:9b:99:55:2a), Dst: 98:03:9b:99:55:2e (98:03:9b:99:55:2e) 802.1Q Virtual LAN, PRI: 0, CFI: 0, ID: 100 Internet Protocol Version 4, Src: 10.1.0.2, Dst: 10.1.0.3 Transmission Control Protocol, Src Port: 43069, Dst Port: 2000, Seq: 1, Ack: 1, Len: 67
	▶ Data (67 bytes) ▶ Int Shim
	▼ Int Metadata
by	Version: 1 Replication Requested: 0 Copy Bit: False Max Hop Count Exceeded: False MTU Exceeded: False Reserved: 0x0000 Hop ML: 6 Remaining Hop Count: 1 Switch ID Bit: True Ingress + Egress Port ID Bit: True Hop Latency Bit: True Queue ID + Occupancy Bit: True Ingress Timestamp: True Egress Timestamp: True Queue ID + Congestion Status: False Egress Port Tx Utilization: False Beserved Instruction bits: 0x00
	Reserved Bits 2: 0x00
IQ	<pre>Int Metadata Stack Switch ID: 0x5a08737f Ingress Port ID: 1 Egress Port ID: 32 Hop Latency: 4294967295 Queue ID: 0 Queue Occupancy: 2 Ingress Timestamp: 2754645988 Egress Timestamp: 2754646406</pre>
:k	▼ Int Metadata Stack
	Switch ID: 0x5a085175 Ingress Port ID: 10 Egress Port ID: 1 Hop Latency: 4294967295 Queue ID: 0 Queue Occupancy: 2 Ingress Timestamp: 2754971591 Egress Timestamp: 2754972874
Intern	

Americas Lightpaths **Express & Protect**

Network Telemetry @ AmLight |

Queue O's Jitter

Queue O's Occupancy

Americas Lightpaths Express & Protect

AmLight-INT QueueTop

- AmLight-INT Collector's QueueTop application consumes INT data and display realtime monitoring of the network's queues
- Topology on the right created to enable experimentation
 - All links and devices are 100G
 - Novi03 switch port 04 has a bottleneck: Node 03 and Node 04 are sending data to their peers.
 - Let's see what happens next...

One Source - One Destination - TCP - ~50Gbps

- Node 04 sending data using TCP to Node 02 at ~50Gbps
- No other traffic
- Top:
 - All Queues are using 114-115 cells (or 9K bytes)
- Bottom:
 - Hop Delay around 1 microsecond (except for Novi03 that ADDs INT header)

QueueTop 0.1	Stats:	Dev	νi	ce	S	•	5	I	nt	e	rf	a	ce	S	•	5	Q	u	eu	es	5:		5	Re	p	or	ts	12	97	75	М	ΤU	J	[s	รน	les	5:	0									
ist of Devic	es, Interf	ace	es	,	Qı	Je	ue	es	,	a	nd	(Ju	eı	Je	(C	C	Jp	ar	າຕຸ	y:	•																								
								_															•																								
Novi01	32	0		[]																																								115	5 (Cells	
lovi04	3	0		[]																								$\left \right $																115	5 (Cells]
lovi05	2	0		[]																																								115	5 (Cells]
lovi02	3	0		[]																																								114	- (Cells]
Novi03	4	2		[]																																								114	- (Cells	1

QueueTop 0. List of Dev	1 Stats: ices, Interf	Dev ace	ice s,	e <mark>s:</mark> Qu	5 eue	In s,	ter ar	rfa nd	Que	s: eue	5 e (Qı Occ	ieu cup	<mark>es</mark> an	: 5 cy:	R	epo	ort	:s:	8	38	MT	U	Is	sue	es:	0							
 Novi01	32	0			 									 						11		11	11			11	11	11	11		П		899	nsl
Novi04	3	0	Ē																														1014	ns]
Novi05	2	0	[]																			$\left \right $											905	ns]
Novi02	3	0	[]			$\left \right $			$\left \right $							$\left \right $			$\left \right $	$\left \right $		$\left \right $	$\left \right $			$\left \right $	$\left \right $		$\left \right $		$\left \right $		1012	ns]
Novi03	4	2	[2177	ns]

Two Sources - Two Destinations - TCP - ~80Gbps

Hop Delay

increasing

4x →

- Node 04 sending data using TCP to Node 02 at ~50Gbps
- Node 03 sending data using TCP to Node 01 at ~25Gbps
- Shared interface/queue on Novi03 port 4
- Top:
 - Now Novi03 uses 1026 cells
- Bottom:
 - Hop Delay at Nov03 around 9 microsend (add_int_metadata and queueing)

ist of Devices,	Interf	ace	s, Queues, and Queue Occupancy:		
					🗲 Нор
ovi01	32	0		115 Cells]	
ovi04	3	0		115 Cells]	Queue
ovi05	2	0	[!!!!!!!!!	115 Cells]	Occupancy
ovi02	3	0	[!!!!!!!!!	114 Cells]	increasing
ovi03	4	0		1026 Cells]	9x

5 Intenfaces, 5 Queues, 5 Penents, 14381 MTH Teches,

QueueTop 0.1 List of Devic	<mark>Stats</mark> : es, Interf	Dev ace	ices: 5 Interfaces: 5 Queues: 5 Reports: 29859 MTU Issues: 0 s, Queues, and Queue Occupancy:	
		 0	F 111111111	0/1 nc7
NOVLOI	52	U		24T [[2]
Novi04	3	0		1100 ns]
Novi05	2	0		912 ns]
Novi02	3	0		1088 ns]
Novi03	4	0	C 111111111111111111111111111111111111	9358 ns]

Two Sources - Two Destinations - TCP – 100% output utilization

- Node 04 trying to send as much data using TCP as possible to Node 02
- Node 03 trying to send as much data using TCP as possible to Node 01
- Shared interface/queue on Novi03 port 4
- Top:
 - Now Novi03 uses 3306 cells (or 264KB)
- Bottom:
 - Hop Delay at Nov03 around 28 microsends (add_int_metadata and queueing)

Question: What has happened to NoviO1 and NoviO4 queues???? Under investigation.

QueueTop 0.1 || Stats: Devices: 5 Interfaces: 5 Queues: 5 Reports: 82485 MTU Issues: 0 List of Devices, Interfaces, Queues, and Queue Occupancy:

Novi01	32	0	24035 Cells
Novi04	3	0	24035 Cells
Novi05	2	0	125 Cells]
Novi02	3	0	135 Cells]
Novi03	4	0	3306 Cells]

QueueTop 0.1 || Stats: Devices: 5 Interfaces: 5 Queues: 5 Reports: 93550 MTU Issues: 0 List of Devices, Interfaces, Queues, and Queue Occupancy:

/i01	32	0	154317 ns]
/i04	3	0	119966 ns]
/i05	2	0	1170 ns]
/i02	3	0	1384 ns]
/i03	4	0	28571 ns]

- Understanding the behavior seen so far:
 - With the current tools, we will test some theories, such as buffer sizing.
- Improve INT Collector's performance:
 - Currently, a 100Gbps flow with 9000 Bytes packets generates around 3-5 Gbps of telemetry.
 - Using Netronome P4 NICs at the INT Collectors
- Next tools:
 - Integration with InfluxDB and Elastic for network visualization/historical data.
 - All tools will be available as Open Source code through the AmLight Github account soon:
 - http://github.com/amlight

Thank You! / Questions? / Comments?

AmLight-INT: In-band Network Telemetry @ AmLight

Jeronimo Bezerra - <jbezerra@fiu.edu> Arun Paneri – Director of Engineering/NoviFlow

References

[1] <u>https://www.preseem.com/2017/03/network-telemetry/</u>
[2] <u>https://tools.ietf.org/html/draft-ietf-opsawg-ntf-01</u>

INT: How does it work?

Americas Liahtpaths **Express & Protect**