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A next generation VLA

• Scientific Frontier: thermal imaging at milli-arcsecond resolution
• Goals

• 10x effective collecting area of VLA: ~244x18m antennas
• 10x better spatial resolution: up to ~1000km baselines

• Frequency range: 1.2-116GHz
• Locate in southwest US (AZ, NM, & TX) and MX, centered on present 

location of VLA
• Low technical risk
• NSF-Funded Development
• Under Evaluation by Astro2020 Decadal Survey
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NAS DS2020 
Roadmap

NSF MREFC 
Roadmap
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International Partnerships

• International involvement via SAC, TAC, Community Studies
• Canada, Mexico, Japan, Germany, Netherlands, Taiwan

• Inaugural international development meeting, Socorro (May 2019)
• Provided project overview; possible distribution of work packages

• ngVLA-SKA Future Large Radio Telescope Alliance meeting in 
Reykjavik, Iceland (Jun 2019)

• Purpose: investigate process and possibility of a scientific alliance between 
SKA and ngVLA

• NAOJ-ngVLA workshop, Mitaka
(Sep 2019)
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Recent Highlights

• ngVLA Science Book published (Dec 2018)
• Facilitated community submission of ngVLA 

science white papers to Astro2020 Decadal 
Survey (Jan 2019) 

• Submitted ngVLA facilities white paper to 
Astro2020 Decadal Survey (Jul 2019)

• ngVLA Reference Design Concept completed 
(Aug 2019)

• https://ngvla.nrao.edu/page/refdesign
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ngVLA Reference Design

Band
# 

Dewar fL
GHz

fM
GHz

fH
GHz

fH: fL BW
GHz

1 A 1.2 2.35 3.5 2.91 2.3
2 B 3.5 7.90 12.3 3.51 8.8
3 B 12.3 16.4 20.5 1.67 8.2
4 B 20.5 27.3 34.0 1.66 13.5
5 B 30.5 40.5 50.5 1.66 20.0
6 B 70.0 93.0 116 1.66 46.0

• 1.2 - 116 GHz Frequency Coverage
• Main Array: 214 x 18m offset Gregorian Antennas

• Fixed antenna locations across NM, TX, AZ, MX.

• Short Baseline Array: 19 x 6m offset Greg. Antenna
• Use 4 x 18m in TP mode to fill in (u, v) hole  

• Long Baseline Array: 30 x 18m antennas located across continent for baselines up to 8860km
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Short Baseline Array (SBA)
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• Short Baseline Array  of 19 
x 6 m  

• Total Power Array of  4 x 18 
m (included as  part of the 
214 main  array).
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Main Array (MA) Configuration

350 miles

Radius Collecting Area 
Fraction

0 km < R < 1.3 
km

44%

1.3 km < R < 36 
km

35%

36 km < R < 
1000 km

21%

• 214 x 18m Antennas



Long Baseline Array (LBA)

Qty Location Possible Site

3 Puerto Rico Arecibo Site
3 St. Croix, US VA VLBA Site
3 Kauai, HI Kokee Park Geo. Obs.
3 Hawaii, HI New Site (off MK)
2 Hancock, NH VLBA Site
3 Westford, MA Haystack
2 Brewster, WA VLBA Site
3 Penticton, BC, CA DRAO
4 North Liberty, IA VLBA site
4 Owens Valley, CA OVRO
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• 30 x 18m Antennas  
at 10 sites

• Balance between 
Astrometry & Imaging 
Use Cases



Antenna Data Rates

• Real-time correlation of all 244 array elements. 
• Up to 20 GHz of instantaneous bandwidth per polarization. 
• 8-bit digitization below 50 GHz.
• 4-bit digitization for 70-116 GHz band. 
• Requantized and formatted for data transmission on packet-

switched networks

• 320 Gbps per antenna, over 4x100 Gbps links. 
• ~3 antenna LBA sites = ~1 Tbps link
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Main Array Fiber Optic Network
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• Dedicated point-to-
point fiber links for 
~196 antennas in NM 
within ~300 km radius 
of core.

• ISP connected 
elements beyond inner 
stations. 

• ISP connections to LBA 
sites.

• Leased fiber vs Leased 
Bandwidth (TBD)



VLB Fiber Optic Network
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Facility Integration

• VLBI Recording Capabilities:
• 3 beams, VDIF, Mark-X recorder standard

• eVLBI Integration:
• ~260 element correlator
• Built-in data buffers and packet re-ordering for packet switched 

network interfaces. 
• Real time links to GBT? LMT? ALMA? Others?
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Data Processing

• Post Processing: storing the raw visibilities will be possible. 
• Data processing is post-facto, with system sized for average throughput. 
• Data Rates:

• Average – 8 GB/s. 
• Peak - 128 GB/s. 

• Computing: Challenging, but feasible with current technology.
• Sized by time resolution, spectral resolution, and multi-faceting in imaging.
• ~60 PFLOPS/s (inc. efficiency factors) matches average data throughput. 
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Serving Data to Users

• “Science Ready Data Products” Operations Model
• Process-in-place for data to most PIs.
• Data products requested in proposal; Pipeline interaction 

possible. 
• Low-level data products (visibilities, flagging tables) 
• High-level data products for Standard Observing Modes 

(e..g, calibrated image cubes)
• Archive reprocessing interface for users. 
• Data Reduction S/W; Data Analysis S/W
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Summary

• ngVLA is being designed to tap into the astronomy community’s 
intellectual curiosity and to enable a broad range of scientific discovery 

• Key Science Goals, science use cases, and Science Book are complete
• The ngVLA Reference Design, a credibly-costed and low-technical risk 

concept, is complete and ready for Astro2020 Decadal Survey.
• System-level design (requirements, architecture) will be baselined in 

2020 to enable sub-system conceptual design down-selects. 
• Major Challenges: No major technological blockers. Challenges are in 

cost-performance optimizations, manufacturability and reliability.
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Key Science Goals
• Unveiling the Formation of Solar System Analogues 
• Probing the Initial Conditions for Planetary Systems and Life with 

Astrochemistry
• Using Galactic Center Pulsars as Fundamental Tests of Gravity
• Understanding the Formation and Evolution of Stellar and 

Supermassive BH’s in the Era of Multi-Messenger Astronomy
• Charting the Assembly, Structure, and Evolution of Galaxies Over 

Cosmic Time
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Community Engagement

• Science meetings sponsored
• Developing the ngVLA Science Program, Socorro, NM (Jun 2017)
• The VLA Today and Tomorrow: First Molecules to Life on Exoplanets, 

National Harbor, MD (Jan 2018) 
• Astrophysical Frontiers in the Next Decade, Portland, OR (Jun 2018)
• Theoretical Advances Guided by RMS Arrays, Seattle, WA (Jan 2019)
• Radio/Millimeter Astrophysical Frontiers in the Next Decade, Charlottesville, 

VA (Jun 2019)
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Performance Comparison
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Sensitivity Angular resolution



Project Organization

• 10 Integrate 
Product Teams 
(IPTs)

• MREFC-style 
project definition

• Actively-engaged 
science and 
technical advisory 
councils
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NRC Canada / 
Lynn Baker

18m Antenna Optics
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• 3.5m Subreflector

• 55° Half Angle

• 95% Illum. Eff.

• -16dB Edge Taper

• -19dB First Side Lobe

• -27dB Second Side Lobe

• Offset Gregorian: Wide subtended angle of the subreflector for small feeds. 
Likely lowest cost for required A/T. (Ant. Memo #1)

• 18m Aperture: Based on cost and performance modeling (Ant. Memo #2)
• Shaped: Aperture efficiency optimized for single pixel feeds.



Antenna Concept
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• Feed Low:  Maintenance requirements favor a 
receiver feed arm on the low side of the 
reflector.

• Mount concept:  Leaning towards pedestal 
concepts for life-cycle cost. W/T under 
evaluation.

• Drives:  All motor-gearbox; gearbox and linear 
drives; all direct drive, etc. 

• Materials: Traditional Al panels & steel BUS; 
composite reflector and mix of steel and 
carbon BUS.

NRC 18m

NRC 6m

GDMS 18m

Key Specifications
18m Aperture Offset Gregorian
Shaped Optics 4° Slew & Settle in 10 sec
Surface: 160 µm rms Referenced Pointing: 3” rms



Front End Concept

• 6 Bands in 2 Cryogenic Dewars
• 1.2-3.5 GHz and 3.5-12.3 GHz Quad-Ridge Horns, 3.5:1 

bandwidth, coaxial LNAs.
• 12.3-50.5 GHz using three 1.67:1 BW corrugated horns and 

waveguide LNAs.
• 70-116 GHz 1.67:1 BW corrugated horn and waveguide 

LNAs. 
• Single stage down-conversion to baseband for 5 bands. 

Direct SSB or IQ sampling using modular devices @ FE.
• Two-stage Gifford-McMahon cryogenic system with variable-

speed cryocoolers and compressors for reference design. 
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ASU/Caltech Band 1 Prototype Cryostat

(Credit:  Sander Weinreb, Caltech & Hamdi Mani, ASU)
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(courtesy S. Srikanth, NRAO CDL)

(courtesy R. Lehmensiek, EMSS)

Feed Development
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Orthomode Transducer (OMT)

• Developed by NAOJ for ALMA Band 
2+3 (67 – 116 GHz)

• Modified Boifot double-ridged 
waveguide junction

• Highly compact
• Very low loss, excellent port match
• Readily manufactured with 

conventional CNC mills
• Directly applicable on Band 6
• Design will scale for Bands 3 – 5

(courtesy Alvaro Gonzalez and Shinichiro Asayama, NAOJ)



Compressor Development by Sumitomo

• Phase 1:
• Build FA40 prototype with VFD (completed)
• Measure the performance: flow vs power (completed)
• Measure RFI and design shielded enclosure for electronics (pending)

• Phase 2:
• Integrate FA40 capsule into a FA70 outdoor enclosure
• Relocate control/power electronics to an outdoor-rated RFI enclosure (ngVLA prototype)

FA40 Integration into 
FA70 outdoor enclosure
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Integrated Receiver Digitizers (IRD) 

• Small integrated modules mounted 
at secondary focus near the front 
ends

• Direct sampling for 1.2 – 3.5 GHz
• Downconverted sideband 

separating sampling for 3.5 – 116 
GHz

• Custom digitizer IC in development:
• 8 bit, 7 Gsps for bands 1-5
• 4 bit, 14 Gsps for band 6

• Output on multiple 56 Gbps
unformatted optical data streams 

T504 - Band 3H 2SB IRD Module 
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Integrated Receiver Digitizers (IRD)
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• Side-Band Separating Sampling for Bands 2-6. 
• All Local Oscillator (LO) Signals are harmonics of 2.9 GHz.
• 3.5 GHz Sampler Clocks provide overlapping side-bands. 
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Antenna Electronics Development

• Digitizer-Serializer ASIC Prototype.
• Custom MMIC chips for Band 5, 6 (Post Amps).
• IRD Deserialization Code.
• WVR Test Platform Using Integrated MMIC Modules.
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FE:

1.5 m
x

1.0 m
x

0.6 m



Time & Frequency References
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• 187 Antennas on Plains of San 
Agustin: 

• Central clock and LO generation. 
Within 40 km point-to-point.

• Fiber optic links to Front End.
• 30 Mid-baseline Antennas:

• Synchronous Time & Frequency 
Reference Distribution to ~300 km.

• Repeaters and EDFAs. 
• 16 Mid-Baseline Antennas + LBA:

• Local clocks and LO generation.
• Fallback: Local primary references 

(e.g., Active Hydrogen Maser & GPS)
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Frequency Reference Distribution

Transmitter module design
L1 Out

L2 AOM

Mon AOM

Loop Servo FM

MS

DDS
PPS

Bill Shillue, NRAO CDL

• Based on SKA1-MID Implementation, uses image 
reject receiver principle first developed by [Hitoshi 
Kiuchi, 2011]

• Dual optical carrier transmission of reference & 
timing to antennas

• L1: Laser source
• L2: L1 offset by 5.8 GHz + DDS 
• DDS offset is per antenna

• MS: microwave shift frequency = 5.8 GHz (RF)
• 1 PPS embedded timing signal
• Provides for round trip phase stabilization

[Hitoshi Kiuchi, 2011] “Optical transmission signal phase 
compensation method using an Image Rejection Mixer,” IEEE 
Photonics Journal, Vol.3, No.1, pp.89-99, 2011.
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Central Signal Processor



Data Processing

• Post Processing: storing the raw visibilities will be possible. 
• Data processing is post-facto, with system sized for average throughput. 
• Data Rates

• Average – 8 GB/s. 
• Peak - 128 GB/s. 

• Based on CASA.

• Computing: Challenging, but feasible with current technology.
• Sized by time resolution, spectral resolution, and multi-faceting in imaging.
• ~60 PFLOPS/s (inc. efficiency factors) matches average data throughput. 
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S/W 
Architecture

• First decomposition: 
• 5 subsystems 
• 4 datastores

• Integrates with 
external on-going 
projects: TTA, SRDP, 
ngCASA, HTC, etc.

• Proposal Mgt. and 
Offline subsystems 
expected to be 
substantially inherited 
(ngCASA based).
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Technical Risks

• Moore’s Law
• Don’t need transistor density to 

continue to increase, but do need 
Oper./$ trends to continue. 

• Parallelization efficiency is a concern.
• The new RFI environment 

• LEO satellite revolution will impact all 
ground based facilities.

• Cost vs. Risk Curve - Choices
• E.g., integrated receiver ASIC, 

composite reflectors



Summary

• The project has developed a coherent technical concept to achieve the 
identified science.

• The project and international partners are developing novel 
technologies to a suitable level of technical readiness prior to 
conceptual design down-selects.

• Technical risks are understood. Project should exploit technical 
opportunities to improve cost and/or technical performance. 
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RFI 
Mitigation:
• Scheduler
• RFI-DB
• DBE
• CBE
• Post Proc.



Operations Drivers

• SRDP (Science Ready Data Products) Telescope
• Data must be processable with a standard pipeline. 
• Data calibration can/should drive the design. 
• Repeatability & stability in analog system, finite tuning choices.
• Flexible sub-array management, but fixed sub-array definitions.
• Service calibrations, impact on data model.

• “Large N” Array & Life-cycle Cost
• Manufacturability & maintainability.
• Automation of routine calibrations, data validations. 
• Expert system for maintenance prediction & issue resolution. 
• Reduced parts count, parts integration.
• Power consumption. 
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Science Drivers

• Frequency Coverage: 1.2 to 116 GHz, both edges drive design.
• Sensitivity: Area, Tsys, bandwidth, deconvolution algorithms.
• Resolution: 400km+ minimum extent, 8000km+ for multi-

messenger.
• Image Fidelity: Even sampling of (u, v)-plane from 10s of meters 

to 100s of km.  
• Dynamic range: pointing, phase cal, electronic stability. 
• Large-N: central archive and compute. High level data product 

delivery pipelines. 
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S/W and Computing Considerations

• Code Development: Approx. 2.6M new lines of code expected. 
• ALMA / VLA SLOC – 4.77M / 4.35M (Actual)
• ngVLA SLOC – 5.75M (Projected). 
• Reuse estimated on each element of logical architecture. 
• 54% Average Reuse Projected – 2.63M new SLOC.

• Risks: 
• Depends upon continuation of the historic trend in cost of storage and 

compute capacity. 
• Uncertainty in time spent on cases (4 of 25 use cases) that need w-

projection.
• Uncertainty in algorithmic compute scaling for specific use cases.
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ALMA (SLOC) EVLA (SLOC) Estimation (MSLOC) Estimated reuse (%) Effort Size (MSLOC)
Online Subsystem
Calibration 109,798 9,857 0.100 40% 0.060
Common 431,125 16,863 

1.400 30% 0.980

Control 222,233 439,876 
Correlator 710,860 846,112 
Diagnostic and Engineering Tools 18,721 66,833 
Metadata Capturer 46,135 8,998 0.050 0% 0.050
Monitoring 15,517 24,365 0.050 50% 0.025
Observation 114,279 49,285 0.100 20% 0.080
Operation 88,177 52,934 0.200 0% 0.200
Quick-Look 31,547 - 0.050 0.050
Scheduling 37,085 3,127 0.050 30% 0.035
Telescope Configuration 85,584 2,019 0.100 0% 0.100
Offline Subsystem
Archive & Observatory Interfaces 504,545 303,035 1.000 80% 0.200
Data Processing 2,078,245 2,078,245 2.000 70% 0.600
Proposal Management Subsystem
Proposal Management 279,728 444,527 0.500 80% 0.100
Maintenance, Support & Development
CMMS Integration - - 0.100 0% 0.100

Simulation - - 0.050 0% 0.050

Total 4,773,579 4,346,076 5.750 54% 2.630



Mid-Scale Baseline 
Optimization: 
the Walker 
Configuration
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= In Support of Astro 2020 DecadalSurvey

= In Support of ConceptDevelopment/MREFC

= Solicitation of Project Funding

= Completed Effort (as 4/20/2019)



Electronics Design Philosophies

• Digitize as close as possible to the receiver.
• Short, stable signal path. Minimize frequency conversion steps. 

• Utilize highly integrated, manufacturable sub-assemblies.
• Reduced parts count, mechanical connectors.
• Limited number of Line Replaceable Units (LRUs).

• Emphasize low power, high reliability designs.
• Provide advanced remote diagnostic & fault prediction capability

• Know which LRU has failed before visiting an antenna: swap & return.
• Predict what’s about to fail to better schedule maintenance visits.
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Front Ends / Dewars

• 6 receivers in 2 dewars
• Covering 1.2 – 116 GHz
• Compact, cooled feeds
• Linear polarization
• Total mass ~120 Kg
• RF output at sky frequency
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Local Oscillator & Clocks

• Secondary Focus Enclosure:
• Reference generator:

• Recovered signal locks 7 GHz 
reference oscillator

• An offset reference is generated 
by dividing reference by 2, 4, or 8

• 156.25 MHz digitizer clock 
reference 

• LO Modules:
• Co-located with each 2SB IRD 
• Use 7GHz & offset reference to 

generated coarse tunable LO’s 
for the mixers in the IRD modules

L501 LO Ref/Sample Clock Generator 

+G
11x

Offset Ref
Faraday 
Mirror

Acousto 
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ModulatorDRO PLL
+G

+G

DIV
4or8
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13x
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XO

Thermal Management

Ref fiber
Input
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14-15 GHz
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Thermal Management

15.297-15.75 GHz

VCO PLL
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L504-D
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28-28.5 GHz

VCO PLLX2
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+GX2
112-114 GHz

L504-K
7 GHz Ref
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Band 6 IRD4 112-114 GHz 2SB LO

Thermal Management
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Reference & Timing Distribution

• Reference signals from array center are sent to two locations for 
timing recovery & local oscillator (LO) / sample clock generation

L503 - Reference Recv, Generator and Distribution

Timing
 to M&C 

O
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• Pedestal rack: PPS timing signal 
is recovered and used along with 
NTP in an FPGA to generate:

• Timecode for Digital Back End 
(DBE)

• Timing signal(s) for local M&C
• Switching signal for front end noise 

diodes
• Timing signal may also be 

regenerated for transmission to next 
station
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The Main Array (MA) Configuration

350 miles

Radius Collecting Area Fraction

0 km < R < 1.3 km 44%

1.3 km < R < 36 km 35%

36 km < R < 1000 km 21%



Short Baseline Array (SBA)
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• Short Baseline Array  of 19 
x 6 m  

• Total Power Array of  4 x 18 
m (included as  part of the 
214 main  array).



Long Baseline Array (LBA)

Qty Location Possible Site

3 Puerto Rico Arecibo Site
3 St. Croix, US VA VLBA Site
3 Kauai, HI Kokee Park Geo. Obs.
3 Hawaii, HI New Site (off MK)
2 Hancock, NH VLBA Site
3 Westford, MA Haystack
2 Brewster, WA VLBA Site
3 Penticton, BC, CA DRAO
4 North Liberty, IA VLBA site
4 Owens Valley, CA OVRO
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• 30 x 18m Antennas  
at 10 sites. 

• Balance between 
Astrometry & Imaging 
Use Cases.



ngVLA Project

• Project Office leadership team:
• Project Director: Dr. Mark McKinnon
• Project Manager: Kay Cosper
• Project Scientist: Dr. Eric Murphy 
• Project Engineer: Rob Selina
• Cost Analyst – Alex Walter

• 10 Integrated Product Teams (IPTs).
• MREFC-style project definition.
• Actively engaged science and technical advisory councils.
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Astro2020: ngVLA Reference Design

• A baseline design with 
known cost and low 
technical risk. Technical & 
cost basis of the 
Astro2020 Decadal Survey 
proposal. 

• 1500 page, 75 document 
package that describes 
end-2-end system design. 

• Bottom-up supporting 
cost estimate. 
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MAIN PROPOSAL

SCI. BOOK

SCI. WHITE PAPERS

SYS. REF. DESIGN

SUB-SYS. REQS.

SUB-SYS. DESIGN

COST ESTIMATE

SUB-SYS. ESTIMATE

SYS. REQS.

SYS. ARCH.

(~18 Sub. System Estimates)(~40 Sub-System Design Docs)

(~9 System-Level Design Docs)
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