AmLight Express and Protect (AmLight-ExP): Enabling Research and Education in the Americas via cooperation and collaboration

Americas Lightpaths **Expres**

Julio Ibarra, PI Heidi Morgan, Co-PI Chip Cox, Co-PI Jeronimo Bezerra, Chief Network Architect Florida International University

Americas Summit of Academic Networks September 5, 2019 Cancun, Mexico

lab Paule

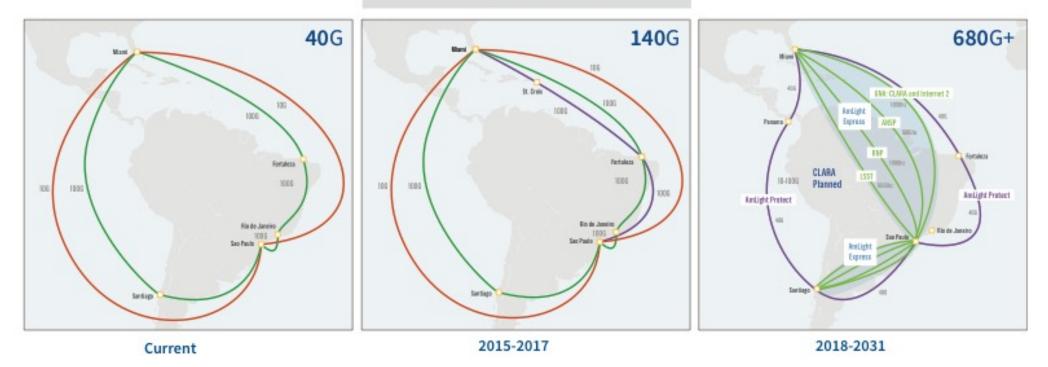
Santiago

Fortaleza

Los Angele

Outline

- AmLight Vision
- Current Status
- Science Driver: LSST
- AmLight-SACS
- Conclusion


2

Americas Summit of Academic Networks 2019

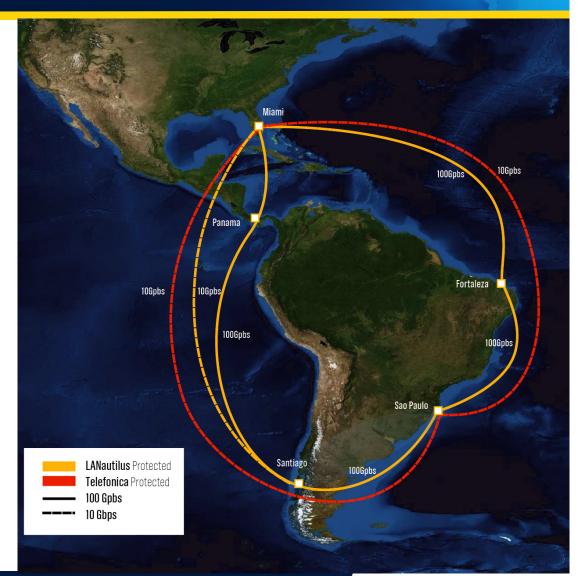
AmLight Express & Protect Vision

Backbone: AMLIGHT

- Community-operated network infrastructure
- Leased capacity on two submarine cable systems, evolving to a hybrid model that includes spectrum from Boca Raton to Sao Paulo
- Express (spectrum) capacity will provide up to 6 optical channels, which will be lit with 100G transponders today
- Protect (leased) capacity 100G ring will back up the Express capacity

3

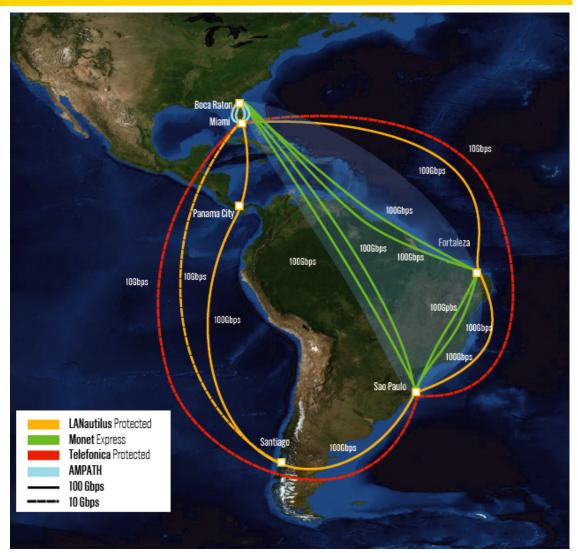
Partners and Goals


- AmLight-ExP interconnects the U.S. to key aggregation points in South and Central America (Brazil, Chile, Panama)
- 5-year Cooperative Agreement with the U.S. National Science Foundation
- Cooperative and collaborative partnerships with ANSP, RNP, CLARA, REUNA, AURA, FLR, and Internet2
- Continue evolving a rational network infrastructure using both optical spectrum and leased capacity

Americas Lightpaths Express & Protect

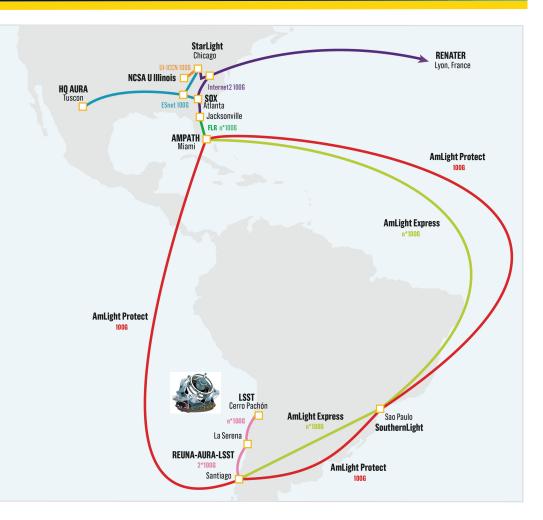
AmLight ExP Network Infrastructure in January 2019

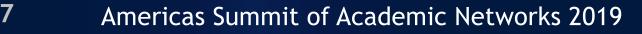
- 100G ring Miami-Fortaleza, Fortaleza-Sao Paulo, Sao Paulo-Santiago, Santiago-Panama City, Panama City-Miami
- 10G ring from Miami-Sao Paulo-Miami for protection (red)
- 10G Miami-Santiago for protection
- 100G and 10G rings are diverse, operating on multiple submarine cables
- Total upstream capacity presently at 230Gbps



5 Americas Summit of Academic Networks 2019

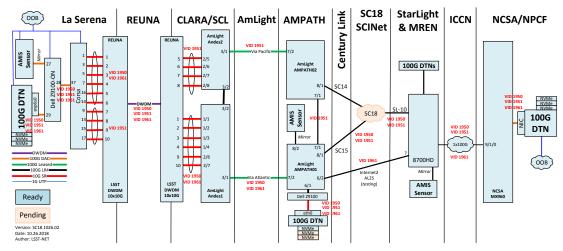
AmLigh- ExP Network Infrastructure Today


- Express Ring: Boca Raton, Fortaleza, Sao Paulo
 - 6 (green lines) x 100G links
 - 4 managed by RNP
 - 2 managed by FIU/ANSP/LSST
- 100G Protect Ring: Miami-Fortaleza, Fortaleza-Sao Paulo, Sao Paulo-Santiago, Santiago-Panama, and Panama-Miami (solid orange)
- 10G ring from Miami-Sao Paulo-Miami for protection (red dashed)
- 10G Miami-Santiago for protection (orange dashed)
- 100G and 10G rings are diverse, operating on multiple submarine cables
- Total upstream capacity presently at 630Gbps!



Large Synoptic Survey Telescope (LSST)

- LSST is a large-aperture, wide-field, groundbased optical telescope under construction in northern Chile
- The 8.4 meter telescope will take a picture of the southern sky every 27 seconds
 - producing a 13 Gigabyte data set
- Each image must be transferred to the archive site at NCSA in Champaign, Illinois, within 5 seconds
 - Reason: for processing to be completed in time to generate "transient alert" notifications to the worldwide astronomical community within 60 seconds
- In response to LSST's transient alert requirements, the network must be scalable, highly available, reliable, and provide highthroughput and guaranteed bandwidth


Challenge: LSST Use Case

LSST is being constructed in northern Chile

- Every 27 seconds throughout the night, LSST will take a 6.4GB picture of the sky, process it, generate transient alerts (6.3GB) from this picture, and then send a 13GB data set to NCSA, at Urbana-Champaign, Illinois
 - From the 27-seconds window, only 5 seconds are available for data transmission
 - Multi-traffic types with different priorities (db sync, control, general Internet traffic) must be supported
 In Serenal RELINA CLARA/SCL AmLight AMPATH E SC18 StarLight ICCN NCSA/NPCE

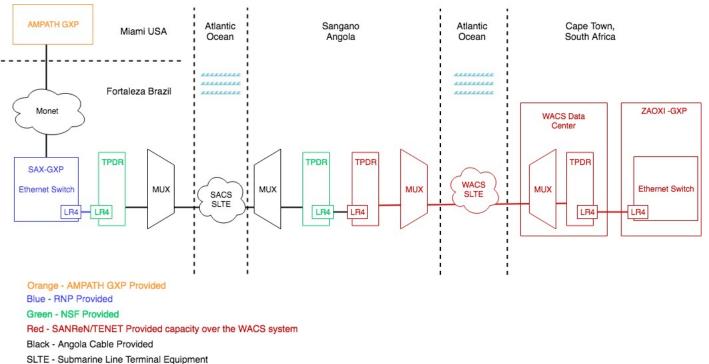
A testbed of the LSST Network was built for Super Computing 2018

- Verified the network design
- Tested network throughput per-segment
- Tested DTN performance



Network infrastructure resources in the Southern Hemisphere

- 225GHz of spectrum on Monet committed in AmLight-ExP project
- 40GHz of spectrum on SACS is available to the R&E community
- TENET operates 220G of capacity on WACS
- South Atlantic eXchange point (SAX) is under development in Fortaleza, led by RNP
- R&E exchange point in Cape Town operated by SANREN and TENET



AmLight-SACS

- AmLight-SACS will activate 40GHz of spectrum on SACS
- Establishes a new South Atlantic route
- Creates a new
 Express connection
 between the U.S.,
 South America and
 Africa by
 - Interconnecting SACS to Monet and WACS
- Will be operated by AmLight, RNP and SANREN

GXP - Global Exchange Point

LR4 - Long Road Transceiver

AmLight-SACS Global Exchange Points

AmLight-SACS has worked together to identify and coordinate new facilities in the South Atlantic,

- Interconnecting the REN exchange points AMPATH (Miami), SAX (Fortaleza) and ZAOXI (Cape Town)
- The SACS cable, between Brazil and Angola, is operational, and we are activating spectrum for REN network use
- The WACS cable, between South Africa and Europe, is operational and connects to SACS in Angola
- SACS and the AmLight ExP cables are to be interconnected at the SAX GXP in Fortaleza

We thus have the ingredients to create a resilient South Atlantic REN interconnection,

 greatly reducing the latency of traffic between the Americas and Africa AMPATH Miami

SAX Fortaleza

ZAOXI Cape Town

Slide borrowed from Michael Stanton

Timeline for AmLight-ExP and AmLight-SACS

2019

- Spectrum activation, Boca Raton to Sao Paulo, (completed)
- Extend AMPATH GXP to Boca Raton (completed)
- Deploy 20Gbps Atlanta to Chicago, Esnet

2020

- Activate spectrum on SACS, then build AmLight-SACS link
- Activate spectrum, Sao Paulo to Santiago
- Deploy new SDN Controller for AmLight-ExP
- Activate 200Gbps, Atlanta to Chicago, Esnet

2021

Activate spectrum, Boca Raton to Atlanta

2022

LSST Operations starts

Thank You!

- NSF AmLight-ExP, AtlanticWave-SDX, AmLight-SACS, AmLight-INT, AMPATH infrastructure, science application support, education, outreach and community building efforts are made possible by funding and support from:
 - National Science Foundation (NSF) awards OAC-1451018, OAC-1451024, OAC-1541402, OAC-1638990, OAC-1848746
 - FAPESP, ANSP grant no. 2008/52885-8
 - Rede Nacional de Ensino e Pesquisa (RNP)
 - Cooperación Latino Americana de Redes Avanzadas (CLARA)
 - Association of Universities for Research in Astronomy (AURA)
 - Florida International University
 - Latin American Research and Education community
 - The many national and international collaborators who support our efforts

THANK YOU!

