
Handling Network Events in a Production SDN Environment

Jeronimo Bezerra <jbezerra@fiu.edu>
Florida International University

TNC17– Linz, Austria – May 31st 2017

Outline

§ Introduction to AmLight

§ SDN Topologies

§ Troubleshooting production SDN networks

§ What should be monitored?

§ Control Plane Monitoring

§ Data Plane Monitoring

§ Tools and Approaches used @ AmLight
§ Future

2 Handling Network Events in a Production SDN Environment – TNC2017

AmLight: a Distributed Academic Exchange Point

§ Production SDN Infrastructure since Aug-2014

§ Collaboration: FIU, NSF, ANSP, RNP, Clara, REUNA and AURA

§ Connects North and South America with multiple 10G and 100G links
§ 4 x NAPs: Brazil(2), Chile and Panama

§ 2000+ institutions connected

§ Carries Academic and Commercial traffic
§ Control Plane: OpenFlow 1.0

§ Network Programmability/Slicing
§ OESS/NOX, ONOS, Kytos and Ryu

§ NSI-enabled

§ Currently, operating with more than a 1000 flow entries

§ Web site: www.sdn.amlight.net

3 Handling Network Events in a Production SDN Environment – TNC2017

4 Handling Network Events in a Production SDN Environment – TNC2017

Troubleshooting a production SDN network

•  Troubleshooting production environments has different requirements
–  Has to be agile, least disruptive as possible and needs historical data
–  Tools have to be handy

•  With SDN, legacy troubleshooting tools are partially useful or completely useless
–  OAM (Operation, Administration and Maintenance) is not supported by OpenFlow (yet)
–  Ping, traceroute, SNMP, Wireshark/Tcpdump are not made for OpenFlow

•  More than ever, deep knowledge of the hardware and software platforms are required:
–  Usage of the ”hidden” commands and application logs become part of your routine

•  A ”premium” support contract with hardware vendor is desired
–  Going through the level 2 TAC team will increase your stress and the network recovery time

5 Handling Network Events in a Production SDN Environment – TNC2017

SDN Topologies: Starting Simple

•  Usually, with just one SDN App,
troubleshooting is less complex
–  One SDN App is connected through an out-of-band

network to multiple OF switches
–  SDN App has full control of ports and VLANs

•  A good network sniffer and a centralized
Syslog server are the key to success here
–  Helps validate the OpenFlow messages sent and

received
–  Easy access to event messages

Application
Layer

Forwarding Device

SDN App

OpenFlow 1.x

Forwarding Device
Forwarding Device

Forwarding Device
User AUser A User BUser B

6 Handling Network Events in a Production SDN Environment – TNC2017

SDN Topologies: Adding Complexity
•  When supporting control planes in parallel you have:

–  More applications to understand and track
–  Different levels of software stability
–  Higher chances of network outages

•  Slicing/Partitioning adds complexity:
–  OpenFlow communication between OpenFlow switch and SDN App is

not end-to-end:
•  OF Switch -> Slicer + Slicer -> OF App

–  Complexity to track which switch is talking to which SDN App and
vice-versa
•  OFPT_ERROR messages are asymmetric
•  OF doesn’t carry DPID on each OF message

•  ”Traditional” sniffers are not enough to track indirect
OpenFlow messages

Application
Layer

Forwarding Device

OESS ONOS/SDN-IP

OpenFlow 1.0

Forwarding Device
Forwarding Device

Forwarding Device

FlowSpace Firewall

OpenFlow 1.0

User AUser A User BUser B

Testbed

7 Handling Network Events in a Production SDN Environment – TNC2017

Control Plane: What should be monitored?

•  Everything concerning the OpenFlow communication:
–  # of flows installed

•  Avoid getting close to the limits documented (weird stuff might happen)

–  Rate of FlowMods, PacketOut/PacketIn and Stats Requests / second:
•  Switch’s CPU is directly affected by these rates

–  # of OFP_FLOW_ERROR messages:
•  Some messages might indicate that a crash is about to happen (FULL_TABLE)

–  Flows duration:
•  Helps to understand traffic disruption due to flows being reinstalled

–  Flow and Port Counters (bps and pps)

•  If slicing/virtualization is a reality, collect counters per slice

•  Most of the SDN apps don’t provide such data, some provide through REST interfaces

8 Handling Network Events in a Production SDN Environment – TNC2017

Data Plane: What should be monitored?

•  In some cases, OpenFlow rules are installed but traffic is not flowing: black holes

•  Some possible data plane black holes:
–  A specific line card or interface discarding all traffic

•  Due to an interface memory issue, flows are installed but traffic is discarded

–  Interface down in one side but up in the remote and the SDN App doesn’t understand that
•  For instance: 10G LAN-PHY, Ethernet circuits and 100G long haul circuits
•  In this case, depending of the side, the SDN App installs the circuits pointing to the affected link, discarding all traffic

–  A specific installed flow entry crashed
•  Due to an interface memory issue, one specific flow is affected and traffic is discarded
•  Depending of the number of OpenFlow switches and flow entries, finding the problem might be extremely time-consuming

•  In these cases, in-band tests are required:
–  Just a very few SDN Apps test in-band per link
–  No SDN Apps test in-band per flow

9 Handling Network Events in a Production SDN Environment – TNC2017

Control Plane Monitoring: Tools
•  Monitoring the OpenFlow messages with passive packet capture:

–  Non-intrusive/Almost risk-free

•  Few tools available:
–  Wireshark/tshark/tcpdump
–  AmLight OpenFlow Sniffer

•  AmLight OpenFlow Sniffer was created to be CLI-based with
support to environments with slicers:
–  Dissects OpenFlow 1.0 and 1.3*
–  Doesn’t require GUI or XWindow
–  End-to-end communication visualization
–  Highlights important fields
–  Many filters available to optimize tshoot!
–  Source: github.com/amlight/ofp_sniffer

Application
Layer

Forwarding Device

OESS ONOS/SDN-IP

OpenFlow 1.0

Forwarding Device

Forwarding Device

Forwarding Device

FlowSpace Firewall

OpenFlow 1.0

User AUser A User BUser B

Testbed

Monitor msgs:
OpenFlow Sniffer, OFFR

libpcap

10 Handling Network Events in a Production SDN Environment – TNC2017

Control Plane Monitoring: Tools [2]
Monitoring All Applications and Counters in a centralized NMS:

–  Scripts collect info from SDN Apps’ REST interfaces and export via
JSON

–  Zabbix imports JSON data and save into a MySQL database
–  Currently, collecting data from OESS, ONOS, FSFW and switches

Application

Layer

Forwarding Device

OESS ONOS/SDN-IP

OpenFlow 1.0

Forwarding Device

Forwarding Device

Forwarding Device

FlowSpace Firewall

OpenFlow 1.0

User AUser A User BUser B

Testbed

SNMP, REST, JavaAPI, etc

Monitoring:
Zabbix + customized scripts

11 Handling Network Events in a Production SDN Environment – TNC2017

Data Plane Monitoring: Tools
•  Most of the SDN Apps use LLDP or BDDP for topology

discovery
–  Once the topology is discovered, these protocols are not used

to monitor the topology
–  Also, interval between LLDP/BDDP packets is not appropriated

for link monitoring

•  An in-band testing approach is needed to validate
the Data Plane
–  OESS does through its Forwarding Verification module
–  Most of other SDN Apps don’t have anything equivalent

•  Even though OESS/FVD validates the data path, it
doesn’t valite users’ flows
–  A full port issue is detected, but a single flow issue is not

Application
Layer

Forwarding Device

OESS ONOS/SDN-IP

OpenFlow 1.0

Forwarding Device

Forwarding Device

Forwarding Device

FlowSpace Firewall

OpenFlow 1.0

User AUser A User BUser B

Testbed

Monitoring Data plane: Trunk ports: OESS FWD

12 Handling Network Events in a Production SDN Environment – TNC2017

Data Plane Monitoring: Tools [2]

•  Monitoring individual flows is important but
extremely complex
–  Being proactive with all flows is desired but the

interval between tests and number of flows
needed must to be taken into consideration

–  Using a mix approach is the best suggestion
•  Track ”most important” flows only
•  Users won’t be happy, but your switches won’t crash

•  An approach to test users’ flows was developed at
AmLight (next)

Application
Layer

Forwarding Device

OESS ONOS/SDN-IP

OpenFlow 1.0

Forwarding Device

Forwarding Device

Forwarding Device

FlowSpace Firewall

OpenFlow 1.0

User AUser A User BUser B

Testbed

Monitoring User Flows: SDNTrace

13 Handling Network Events in a Production SDN Environment – TNC2017

Data Plane Monitoring: Tools [3]
•  AmLight's developed its own SDNTrace to test users’

flows without changing them
–  Works through GUI or REST
–  Very lightweight
–  Very “cheap”, only two-four flow entries needed
–  Traces L2 and L3 flows
–  Developed in collaboration with the Academic

Network of Sao Paulo/Brazil
–  Supports INTER-DOMAIN tracing!

•  Tracing a circuit is done in seconds instead of

many minutes and can be easily integrated with
Zabbix or Nagios

Available at: github.com/amlight/SDNTrace

14 Handling Network Events in a Production SDN Environment – TNC2017

Data Plane Monitoring: Tools [4]

AmLight ANSP

15 Handling Network Events in a Production SDN Environment – TNC2017

Future: SDN Looking Glass

•  Central point for SDN troubleshooting
•  It will centralize all monitoring and troubleshooting information being slice/app-independent and:

–  Store all statistical data (flow, ports, etc.) and OpenFlow messages into a persistent repository (SQL)
–  Track real time OpenFlow Control Plane messages using the AmLight’s OpenFlow Sniffer
–  Track non-OpenFlow information (CPU/Memory utilization, for instance) using SNMP/SSH
–  Run data plane traces, including inter-domain traces, automatically
–  Generate alerts in case of Data Plane black holes
–  Take network snapshots: save the network state for future troubleshooting and capacity planning
–  Provide REST to be used by external SDN apps, auditing tools and external NMZ

•  Collaboration with State University of Sao Paulo / Kytos SDN framework developers:
–  Kytos SDN framework was build with troubleshooting in mind, helping the SDN operation

•  Launch date: Internet2 Technology Exchange 2017 (October 2017)

THANK YOU!

Jeronimo Bezerra
jbezerra@fiu.edu

Handling Network Events in a Production SDN Environment
TNC2017

