AmLight’s SDN Looking Glass: Centralizing SDN monitoring for troubleshooting

Jeronimo Bezerra <jab@amlight.net>
Florida International University

Antonio Francisco <antonio@amlight.net>
Academic Network of Sao Paulo
Outline

- Why a tool just for troubleshooting?
 - Shouldn’t the SDN controller take care of it?
AmLight: a Distributed Academic Exchange Point

- **Production SDN Infrastructure since Aug-2014**
- **Collaboration:** FIU, NSF, ANSP, RNP, Clara, REUNA and AURA
- **Includes two GLIF GOLEs:** AMPATH (Miami) and SouthernLight (Brazil)
 - 4 x NAPs: Brazil(2), Chile and Panama
 - Multiple 10G and 100G links
 - 2000+ institutions connected
- **Carries Academic and Commercial traffic**
- **Control Plane:** OpenFlow 1.0 (with an OF1.3 overlay)
- **Network Programmability/Slicing**
 - OESS/NOX, ONOS, Kytos and Ryu
- **NSI-enabled**
- **Currently, operating with more than a 1000 flow entries**
Why troubleshooting a SDN network is so complex?

• OpenFlow has minimum support for troubleshooting
 – For instance, there are no special/reserved flow cookies

• Vendors assume that their job is done once OpenFlow agents are (partially) implemented
 – No passive OpenFlow connection supported by some vendors
 – No sFlow/Netflow supported for ”OpenFlow” entries in some vendors
 – Not all flow entries have reliable counters
 – Lack of visibility of what is happening inside the datapath’s OpenFlow agent

• Current SDN applications only consider network provisioning
 – Need for troubleshooting features only appears once things start falling apart
Most current SDN applications are developed only by software developers
- Network Engineers could help with the monitoring/troubleshooting specification

Many academic papers suggesting solutions that do not fit in production
- Highly dependent on the controller for actions
- Heuristic and Machine Learning per unknown packet do not scale
- Most solutions consider using Table 0 without addressing the table shift with the ”main” SDN app

SDN concept itself makes things harder sometimes
- Because datapaths have no intelligence at all, controllers always have to be involved
 • Creating scalability and timing issues
 • Making controllers more complex to operate and maintain
SDN vs. Troubleshooting vs. Production Networks

• Troubleshooting production networks has different requirements
 – Has to be agile, least disruptive as possible and needs historical data
 – Tools have to be handy

• More than ever, deep knowledge of the hardware and software platforms are required:
 – Use of ”hidden” commands and application logs become part of your routine

• A ”premium” support contract with hardware vendor is desired
 – Going through the Level 2 TAC team every time will lower your will to live and increase the network recovery time
A single side-application for troubleshooting makes more sense:

Pros:
- Frees the provisioning developers to focus on provisioning
- Avoids duplicated data when multiple SDN applications are running in production
- Eases auditing
- Centralizes all troubleshooting data, making it easier to correlate events
 - OpenFlow agent, NMS, SDN app, slicer and sniffer’s data are processed by just one entity

Cons:
- Parallel applications is still a challenge
 - Not OpenFlow Equal/Equal support by some vendors and OpenFlow controllers
 - Some apps delete flows they don’t recognize (!)
- No East-West protocol standardized
 - Each SDN app will have to be customized to gather status and counters from a remote app
- Another application to maintain
Currently

Next Phase

Goal
AmLight SDN Looking Glass

• Central point for SDN troubleshooting:
 – Centralizes all monitoring and troubleshooting information being slice/app-independent
 – Stores all statistical data (flow, ports, etc.) and OpenFlow messages into a persistent backend
 – Tracks real time OpenFlow control plane messages
 – Tracks non-OpenFlow information (for instance, CPU utilization)
 – Runs trace paths (”traceroute”), including inter-domain
 – Sends alerts via e-mail and Slack
 – Takes network snapshots: save the network state for future troubleshooting and capacity planning
 – Provide REST to be used by external SDN apps, auditing tools and external NMS
 – Supports active and passive topology discovery (LLDP or input file)

• Development team: FIU and ANSP
• Collaboration with State University of Sao Paulo / Kytos developers
• Launch date: Internet2 Technology Exchange 2017 (October 2017) version 0.1
AmLight SDN Looking Glass [2]

- Developed in Python 3.6
- Leverages the python-openflow library
- Built as a Napp on top of Kytos SDN framework
- Uses Influxdb, Mongodb and MySQL for persistence
- Uses Grafana and JavaScript for visualization
- Supports both OpenFlow 1.0, OpenFlow 1.3 and SNMP
- Saves all control plane messages in 100MB files
- Works with OESS’s Forwarding Verification module
- Inter-domain trace using our own protocol (soon with NSI)
- Open Source/GPL
AmLight's SDN Looking Glass: Centralizing SDN monitoring for troubleshooting - GLIF 2017
Handling Network Events in a Production SDN Environment – TNC2017
List of Flows

<table>
<thead>
<tr>
<th>in_port</th>
<th>cookie</th>
<th>priority</th>
<th>Match</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>Filter...</td>
<td>action_output</td>
</tr>
<tr>
<td>0</td>
<td>50001</td>
<td></td>
<td>ee:ee:ee:ee:ee:03</td>
<td>--</td>
</tr>
<tr>
<td>0</td>
<td>50001</td>
<td></td>
<td>ee:ee:ee:ee:ee:04</td>
<td>65533</td>
</tr>
<tr>
<td>0</td>
<td>50001</td>
<td></td>
<td>ee:ee:ee:ee:ee:02</td>
<td>65533</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(3 items)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>4 (1 item)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>------------</td>
</tr>
</tbody>
</table>
Trace Path (with loop)

DP Trace Result

Start from: DPID: 00:00:00:00:00:00:00:01 Port: 4
Start time: 2017-09-22 17:06:40.585510
Total time: 0:00:02.116426

<table>
<thead>
<tr>
<th>Switch/DPID</th>
<th>Incoming Port</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00:00:00:00:00:00:00:02</td>
<td>0:00:00.522604</td>
</tr>
<tr>
<td>2</td>
<td>00:00:00:00:00:00:00:03</td>
<td>0:00:01.051321</td>
</tr>
<tr>
<td>3</td>
<td>00:00:00:00:00:00:00:01</td>
<td>0:00:01.596495</td>
</tr>
<tr>
<td>4</td>
<td>00:00:00:00:00:00:00:00:02</td>
<td>0:00:02.116385</td>
</tr>
<tr>
<td>5</td>
<td>Trace completed with loop, none</td>
<td></td>
</tr>
</tbody>
</table>

AmLight's SDN Looking Glass: Centralizing SDN monitoring for troubleshooting - GLIF 2017
Inter-domain Trace Path

AmLight’s SDN Looking Glass: Centralizing SDN monitoring for troubleshooting - GLIF 2017
THANK YOU!

Jeronimo Bezerra <jab@amlight.net>
Florida International University

Antonio Francisco <antonio@amlight.net>
Academic Network of Sao Paulo

AmLight’s SDN Looking Glass: Centralizing SDN monitoring for troubleshooting
GLIF Meeting 2017